Nuprl Lemma : set-function_wf

[s:coSet{i:l}]. ∀[f:{x:coSet{i:l}| (x ∈ s)}  ⟶ coSet{i:l}].  (set-function{i:l}(s; x.f[x]) ∈ ℙ')


Proof




Definitions occuring in Statement :  set-function: set-function{i:l}(s; x.f[x]) setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] implies:  Q prop: so_lambda: λ2x.t[x] set-function: set-function{i:l}(s; x.f[x]) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  seteq_wf setmem_wf coSet_wf all_wf
Rules used in proof :  isect_memberEquality setEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache dependent_set_memberEquality applyEquality hypothesisEquality functionEquality cumulativity lambdaEquality hypothesis isectElimination sqequalHypSubstitution extract_by_obid instantiate thin sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:coSet\{i:l\}].  \mforall{}[f:\{x:coSet\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  coSet\{i:l\}].    (set-function\{i:l\}(s;  x.f[x])  \mmember{}  \mBbbP{}')



Date html generated: 2018_07_29-AM-09_52_33
Last ObjectModification: 2018_07_18-PM-02_27_21

Theory : constructive!set!theory


Home Index