Nuprl Lemma : set-function_wf
∀[s:coSet{i:l}]. ∀[f:{x:coSet{i:l}| (x ∈ s)}  ⟶ coSet{i:l}].  (set-function{i:l}(s; x.f[x]) ∈ ℙ')
Proof
Definitions occuring in Statement : 
set-function: set-function{i:l}(s; x.f[x])
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
set-function: set-function{i:l}(s; x.f[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteq_wf, 
setmem_wf, 
coSet_wf, 
all_wf
Rules used in proof : 
isect_memberEquality, 
setEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
dependent_set_memberEquality, 
applyEquality, 
hypothesisEquality, 
functionEquality, 
cumulativity, 
lambdaEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s:coSet\{i:l\}].  \mforall{}[f:\{x:coSet\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  coSet\{i:l\}].    (set-function\{i:l\}(s;  x.f[x])  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-09_52_33
Last ObjectModification:
2018_07_18-PM-02_27_21
Theory : constructive!set!theory
Home
Index