Nuprl Lemma : set-part_wf
∀[s:coSet{i:l}]. (set-part(s) ∈ Set{i:l})
Proof
Definitions occuring in Statement : 
set-part: set-part(s), 
Set: Set{i:l}, 
coSet: coSet{i:l}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uimplies: b supposing a, 
pi1: fst(t), 
prop: ℙ, 
mk-set: f"(T), 
Wsup: Wsup(a;b), 
sub-set: {a ∈ s | P[a]}, 
set-part: set-part(s), 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
coSet_wf, 
coSet-is-Set, 
isSet_wf, 
mk-set_wf, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_isectElimination, 
lambdaEquality, 
productEquality, 
isectElimination, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
hypothesis_subsumption, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[s:coSet\{i:l\}].  (set-part(s)  \mmember{}  Set\{i:l\})
 Date html generated: 
2018_07_29-AM-09_52_38
 Last ObjectModification: 
2018_07_25-PM-03_50_26
Theory : constructive!set!theory
Home
Index