Nuprl Lemma : set-part_wf

[s:coSet{i:l}]. (set-part(s) ∈ Set{i:l})


Proof




Definitions occuring in Statement :  set-part: set-part(s) Set: Set{i:l} coSet: coSet{i:l} uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uimplies: supposing a pi1: fst(t) prop: mk-set: f"(T) Wsup: Wsup(a;b) sub-set: {a ∈ P[a]} set-part: set-part(s) subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  coSet_wf coSet-is-Set isSet_wf mk-set_wf coSet_subtype subtype_coSet
Rules used in proof :  equalitySymmetry equalityTransitivity axiomEquality independent_isectElimination lambdaEquality productEquality isectElimination thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid hypothesis_subsumption cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[s:coSet\{i:l\}].  (set-part(s)  \mmember{}  Set\{i:l\})



Date html generated: 2018_07_29-AM-09_52_38
Last ObjectModification: 2018_07_25-PM-03_50_26

Theory : constructive!set!theory


Home Index