Nuprl Lemma : set-relation-on_wf
∀[A:Set{i:l}]. ∀[R:{u:Set{i:l}| (u ∈ A)}  ⟶ {u:Set{i:l}| (u ∈ A)}  ⟶ ℙ'].  (SetRelationOn(A;R) ∈ ℙ')
Proof
Definitions occuring in Statement : 
set-relation-on: SetRelationOn(A;R)
, 
setmem: (x ∈ s)
, 
Set: Set{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
set-relation-on: SetRelationOn(A;R)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteq_wf, 
setmem_wf, 
Set_wf, 
all_wf
Rules used in proof : 
because_Cache, 
isect_memberEquality, 
universeEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
applyEquality, 
rename, 
setElimination, 
functionEquality, 
lambdaEquality, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
setEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:Set\{i:l\}].  \mforall{}[R:\{u:Set\{i:l\}|  (u  \mmember{}  A)\}    {}\mrightarrow{}  \{u:Set\{i:l\}|  (u  \mmember{}  A)\}    {}\mrightarrow{}  \mBbbP{}'].    (SetRelationOn(A;R)  \mmember{}  \mBbbP{}\000C')
Date html generated:
2018_05_29-PM-01_51_56
Last ObjectModification:
2018_05_25-PM-02_00_01
Theory : constructive!set!theory
Home
Index