Nuprl Lemma : seteqweaken1

s1,s2:coSet{i:l}.  ((s1 s2 ∈ coSet{i:l})  seteq(s1;s2))


Proof




Definitions occuring in Statement :  seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  refl: Refl(T;x,y.E[x; y]) guard: {T} uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] and: P ∧ Q equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced :  seteq_wf and_wf coSet_wf equal_wf seteq-equiv
Rules used in proof :  rename setElimination applyLambdaEquality independent_pairFormation dependent_set_memberEquality sqequalRule equalitySymmetry hyp_replacement dependent_functionElimination hypothesisEquality hypothesis isectElimination instantiate lambdaFormation thin productElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
\mforall{}s1,s2:coSet\{i:l\}.    ((s1  =  s2)  {}\mRightarrow{}  seteq(s1;s2))



Date html generated: 2018_07_29-AM-09_50_52
Last ObjectModification: 2018_07_11-AM-11_47_14

Theory : constructive!set!theory


Home Index