Nuprl Lemma : seteqweaken1
∀s1,s2:coSet{i:l}.  ((s1 = s2 ∈ coSet{i:l}) 
⇒ seteq(s1;s2))
Proof
Definitions occuring in Statement : 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
refl: Refl(T;x,y.E[x; y])
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
Lemmas referenced : 
seteq_wf, 
and_wf, 
coSet_wf, 
equal_wf, 
seteq-equiv
Rules used in proof : 
rename, 
setElimination, 
applyLambdaEquality, 
independent_pairFormation, 
dependent_set_memberEquality, 
sqequalRule, 
equalitySymmetry, 
hyp_replacement, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
instantiate, 
lambdaFormation, 
thin, 
productElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}s1,s2:coSet\{i:l\}.    ((s1  =  s2)  {}\mRightarrow{}  seteq(s1;s2))
Date html generated:
2018_07_29-AM-09_50_52
Last ObjectModification:
2018_07_11-AM-11_47_14
Theory : constructive!set!theory
Home
Index