Nuprl Lemma : setmem-funset

A,B,x:coSet{i:l}.  ((x ∈ A ⟶ B) ⇐⇒ function-graph{i:l}(A;_.B;x))


Proof




Definitions occuring in Statement :  funset: A ⟶ B function-graph: function-graph{i:l}(A;a.B[a];grph) setmem: (x ∈ s) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q funset: A ⟶ B all: x:A. B[x]
Lemmas referenced :  iff_wf Piset_wf seteq_wf seteq_weakening setmem-Piset setmem_wf coSet_wf function-graph_wf
Rules used in proof :  instantiate independent_functionElimination dependent_functionElimination impliesFunctionality productElimination addLevel because_Cache cumulativity setEquality lambdaEquality sqequalRule hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis independent_pairFormation cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A,B,x:coSet\{i:l\}.    ((x  \mmember{}  A  {}\mrightarrow{}  B)  \mLeftarrow{}{}\mRightarrow{}  function-graph\{i:l\}(A;$_{}$.B;x))



Date html generated: 2018_07_29-AM-10_05_29
Last ObjectModification: 2018_07_18-PM-04_39_54

Theory : constructive!set!theory


Home Index