Nuprl Lemma : function-graph_wf
∀[A:coSet{i:l}]. ∀[B:{a:coSet{i:l}| (a ∈ A)}  ⟶ coSet{i:l}]. ∀[grph:coSet{i:l}].
  (function-graph{i:l}(A;a.B[a];grph) ∈ ℙ')
Proof
Definitions occuring in Statement : 
function-graph: function-graph{i:l}(A;a.B[a];grph)
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
function-graph: function-graph{i:l}(A;a.B[a];grph)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
seteq_wf, 
orderedpairset_wf, 
exists_wf, 
all_wf, 
setmem_wf, 
coSet_wf, 
sigmaset_wf, 
setsubset_wf
Rules used in proof : 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
dependent_set_memberEquality, 
functionEquality, 
instantiate, 
hypothesis, 
setEquality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cumulativity, 
productEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[A:coSet\{i:l\}].  \mforall{}[B:\{a:coSet\{i:l\}|  (a  \mmember{}  A)\}    {}\mrightarrow{}  coSet\{i:l\}].  \mforall{}[grph:coSet\{i:l\}].
    (function-graph\{i:l\}(A;a.B[a];grph)  \mmember{}  \mBbbP{}')
Date html generated:
2018_07_29-AM-10_05_15
Last ObjectModification:
2018_07_18-PM-04_39_04
Theory : constructive!set!theory
Home
Index