Nuprl Lemma : setmem-loopset

z:coSet{i:l}. ((z ∈ loopset()) ⇐⇒ seteq(z;loopset()))


Proof




Definitions occuring in Statement :  loopset: loopset() setmem: (x ∈ s) seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  exists: x:A. B[x] top: Top rev_implies:  Q uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q and: P ∧ Q iff: ⇐⇒ Q all: x:A. B[x]
Lemmas referenced :  it_wf setmem-mk-coset loopset-sq coSet_wf seteq_wf loopset_wf setmem_wf
Rules used in proof :  dependent_pairFormation productElimination voidEquality voidElimination isect_memberEquality sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}z:coSet\{i:l\}.  ((z  \mmember{}  loopset())  \mLeftarrow{}{}\mRightarrow{}  seteq(z;loopset()))



Date html generated: 2018_07_29-AM-09_52_02
Last ObjectModification: 2018_07_21-PM-00_12_44

Theory : constructive!set!theory


Home Index