Nuprl Lemma : setmem-loopset
∀z:coSet{i:l}. ((z ∈ loopset()) 
⇐⇒ seteq(z;loopset()))
Proof
Definitions occuring in Statement : 
loopset: loopset()
, 
setmem: (x ∈ s)
, 
seteq: seteq(s1;s2)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
top: Top
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
it_wf, 
setmem-mk-coset, 
loopset-sq, 
coSet_wf, 
seteq_wf, 
loopset_wf, 
setmem_wf
Rules used in proof : 
dependent_pairFormation, 
productElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
sqequalRule, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}z:coSet\{i:l\}.  ((z  \mmember{}  loopset())  \mLeftarrow{}{}\mRightarrow{}  seteq(z;loopset()))
Date html generated:
2018_07_29-AM-09_52_02
Last ObjectModification:
2018_07_21-PM-00_12_44
Theory : constructive!set!theory
Home
Index