Nuprl Lemma : snd-orderedpairset
∀a,b:coSet{i:l}.  seteq(snd((a,b));b)
Proof
Definitions occuring in Statement : 
orderedpair-snd: snd(pr), 
orderedpairset: (a,b), 
seteq: seteq(s1;s2), 
coSet: coSet{i:l}, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
orderedpair-snd: snd(pr), 
all: ∀x:A. B[x]
Lemmas referenced : 
seteq_weakening, 
orderedpair-second, 
singleitem_functionality, 
seteq_functionality, 
singleitem-singleset, 
singleset_wf, 
orderedpairset_wf, 
orderedpair-snds_wf, 
singleitem_wf, 
coSet_wf
Rules used in proof : 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,b:coSet\{i:l\}.    seteq(snd((a,b));b)
Date html generated:
2018_07_29-AM-10_02_34
Last ObjectModification:
2018_07_18-PM-03_17_17
Theory : constructive!set!theory
Home
Index