Nuprl Lemma : singleitem-singleset

a:coSet{i:l}. seteq(singleitem({a});a)


Proof




Definitions occuring in Statement :  singleitem: singleitem(s) singleset: {a} seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  guard: {T} exists: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] prop: singleitem: singleitem(s) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  setmem_functionality unionset_wf setmem-unionset iff_wf setmem-singleset seteq_weakening setmem_wf seteq_wf exists_wf coSet_wf singleset_wf singleitem_wf co-seteq-iff
Rules used in proof :  existsLevelFunctionality andLevelFunctionality existsFunctionality impliesFunctionality addLevel because_Cache dependent_pairFormation cumulativity productEquality lambdaEquality sqequalRule instantiate independent_pairFormation independent_functionElimination productElimination hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a:coSet\{i:l\}.  seteq(singleitem(\{a\});a)



Date html generated: 2018_07_29-AM-09_59_24
Last ObjectModification: 2018_07_18-PM-03_03_29

Theory : constructive!set!theory


Home Index