Nuprl Lemma : setmem-unionset

s,x:coSet{i:l}.  ((x ∈ ⋃(s)) ⇐⇒ ∃a:coSet{i:l}. ((a ∈ s) ∧ (x ∈ a)))


Proof




Definitions occuring in Statement :  unionset: (s) setmem: (x ∈ s) coSet: coSet{i:l} all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  exists: x:A. B[x] rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q iff: ⇐⇒ Q unionset: (s) uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q set-function: set-function{i:l}(s; x.f[x]) all: x:A. B[x]
Lemmas referenced :  iff_wf setunionfun_wf setmem-setunionfun exists_wf coSet_wf setmem_wf seteq_wf
Rules used in proof :  independent_functionElimination setEquality rename setElimination dependent_functionElimination impliesFunctionality productElimination addLevel cumulativity productEquality lambdaEquality sqequalRule instantiate independent_pairFormation because_Cache hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s,x:coSet\{i:l\}.    ((x  \mmember{}  \mcup{}(s))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:coSet\{i:l\}.  ((a  \mmember{}  s)  \mwedge{}  (x  \mmember{}  a)))



Date html generated: 2018_07_29-AM-09_53_02
Last ObjectModification: 2018_07_18-PM-02_46_03

Theory : constructive!set!theory


Home Index