Nuprl Lemma : setmem-unionset
∀s,x:coSet{i:l}.  ((x ∈ ⋃(s)) 
⇐⇒ ∃a:coSet{i:l}. ((a ∈ s) ∧ (x ∈ a)))
Proof
Definitions occuring in Statement : 
unionset: ⋃(s)
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
unionset: ⋃(s)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
set-function: set-function{i:l}(s; x.f[x])
, 
all: ∀x:A. B[x]
Lemmas referenced : 
iff_wf, 
setunionfun_wf, 
setmem-setunionfun, 
exists_wf, 
coSet_wf, 
setmem_wf, 
seteq_wf
Rules used in proof : 
independent_functionElimination, 
setEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
impliesFunctionality, 
productElimination, 
addLevel, 
cumulativity, 
productEquality, 
lambdaEquality, 
sqequalRule, 
instantiate, 
independent_pairFormation, 
because_Cache, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s,x:coSet\{i:l\}.    ((x  \mmember{}  \mcup{}(s))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:coSet\{i:l\}.  ((a  \mmember{}  s)  \mwedge{}  (x  \mmember{}  a)))
Date html generated:
2018_07_29-AM-09_53_02
Last ObjectModification:
2018_07_18-PM-02_46_03
Theory : constructive!set!theory
Home
Index