Nuprl Lemma : setmem-setunionfun

s:coSet{i:l}. ∀f:{x:coSet{i:l}| (x ∈ s)}  ⟶ coSet{i:l}.
  (set-function{i:l}(s; x.f[x])  (∀y:coSet{i:l}. ((y ∈  ⋃x∈s.f[x]) ⇐⇒ ∃x:coSet{i:l}. ((x ∈ s) ∧ (y ∈ f[x])))))


Proof




Definitions occuring in Statement :  setunionfun:  ⋃x∈s.f[x] set-function: set-function{i:l}(s; x.f[x]) setmem: (x ∈ s) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  setunionfun:  ⋃x∈s.f[x] guard: {T} pi2: snd(t) pi1: fst(t) set-dom: set-dom(s) set-item: set-item(s;x) set-function: set-function{i:l}(s; x.f[x]) top: Top exists: x:A. B[x] mk-coset: mk-coset(T;f) rev_implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: subtype_rel: A ⊆B member: t ∈ T and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  set-item_wf set-dom_wf seteq_inversion seteq_weakening setmem_functionality seteq_wf setmem-iff setmem-coset setmem_functionality_1 setmem-mk-coset mk-coset_wf setmem-unionfun-implies set-function_wf exists_wf coSet_wf setunionfun_wf setmem_wf coSet_subtype subtype_coSet
Rules used in proof :  dependent_pairEquality dependent_pairFormation universeEquality functionExtensionality because_Cache voidEquality voidElimination isect_memberEquality independent_functionElimination dependent_functionElimination functionEquality dependent_set_memberEquality productEquality instantiate cumulativity setEquality lambdaEquality isectElimination rename thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid introduction cut hypothesis_subsumption independent_pairFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s:coSet\{i:l\}.  \mforall{}f:\{x:coSet\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  coSet\{i:l\}.
    (set-function\{i:l\}(s;  x.f[x])
    {}\mRightarrow{}  (\mforall{}y:coSet\{i:l\}.  ((y  \mmember{}    \mcup{}x\mmember{}s.f[x])  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:coSet\{i:l\}.  ((x  \mmember{}  s)  \mwedge{}  (y  \mmember{}  f[x])))))



Date html generated: 2018_07_29-AM-09_52_54
Last ObjectModification: 2018_07_18-PM-02_44_57

Theory : constructive!set!theory


Home Index