Nuprl Lemma : setmem-unionfun-implies
∀s:coSet{i:l}. ∀f:{x:coSet{i:l}| (x ∈ s)}  ⟶ coSet{i:l}. ∀y:coSet{i:l}.
  ((y ∈  ⋃x∈s.f[x]) 
⇒ (∃x:coSet{i:l}. ((x ∈ s) ∧ (y ∈ f[x]))))
Proof
Definitions occuring in Statement : 
setunionfun:  ⋃x∈s.f[x]
, 
setmem: (x ∈ s)
, 
coSet: coSet{i:l}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
uall: ∀[x:A]. B[x]
, 
mk-coset: mk-coset(T;f)
, 
setunionfun:  ⋃x∈s.f[x]
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
set-item-mem, 
set-item_wf, 
setmem_functionality_1, 
mk-coset_wf, 
setmem-coset, 
coSet_wf, 
setunionfun_wf, 
setmem_wf, 
setmem-mk-coset, 
coSet_subtype, 
subtype_coSet
Rules used in proof : 
independent_functionElimination, 
dependent_set_memberEquality, 
universeEquality, 
because_Cache, 
functionExtensionality, 
productEquality, 
independent_pairFormation, 
dependent_functionElimination, 
dependent_pairFormation, 
functionEquality, 
cumulativity, 
setEquality, 
lambdaEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
isectElimination, 
rename, 
thin, 
productElimination, 
sqequalRule, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
hypothesis_subsumption, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}s:coSet\{i:l\}.  \mforall{}f:\{x:coSet\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}y:coSet\{i:l\}.
    ((y  \mmember{}    \mcup{}x\mmember{}s.f[x])  {}\mRightarrow{}  (\mexists{}x:coSet\{i:l\}.  ((x  \mmember{}  s)  \mwedge{}  (y  \mmember{}  f[x]))))
Date html generated:
2018_07_29-AM-09_52_51
Last ObjectModification:
2018_07_18-PM-02_36_21
Theory : constructive!set!theory
Home
Index