Nuprl Lemma : setmem-unionfun-implies

s:coSet{i:l}. ∀f:{x:coSet{i:l}| (x ∈ s)}  ⟶ coSet{i:l}. ∀y:coSet{i:l}.
  ((y ∈  ⋃x∈s.f[x])  (∃x:coSet{i:l}. ((x ∈ s) ∧ (y ∈ f[x]))))


Proof




Definitions occuring in Statement :  setunionfun:  ⋃x∈s.f[x] setmem: (x ∈ s) coSet: coSet{i:l} so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q cand: c∧ B and: P ∧ Q so_apply: x[s] so_lambda: λ2x.t[x] prop: exists: x:A. B[x] top: Top uall: [x:A]. B[x] mk-coset: mk-coset(T;f) setunionfun:  ⋃x∈s.f[x] subtype_rel: A ⊆B member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  set-item-mem set-item_wf setmem_functionality_1 mk-coset_wf setmem-coset coSet_wf setunionfun_wf setmem_wf setmem-mk-coset coSet_subtype subtype_coSet
Rules used in proof :  independent_functionElimination dependent_set_memberEquality universeEquality because_Cache functionExtensionality productEquality independent_pairFormation dependent_functionElimination dependent_pairFormation functionEquality cumulativity setEquality lambdaEquality voidEquality voidElimination isect_memberEquality isectElimination rename thin productElimination sqequalRule sqequalHypSubstitution applyEquality hypothesisEquality hypothesis extract_by_obid introduction cut hypothesis_subsumption lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}s:coSet\{i:l\}.  \mforall{}f:\{x:coSet\{i:l\}|  (x  \mmember{}  s)\}    {}\mrightarrow{}  coSet\{i:l\}.  \mforall{}y:coSet\{i:l\}.
    ((y  \mmember{}    \mcup{}x\mmember{}s.f[x])  {}\mRightarrow{}  (\mexists{}x:coSet\{i:l\}.  ((x  \mmember{}  s)  \mwedge{}  (y  \mmember{}  f[x]))))



Date html generated: 2018_07_29-AM-09_52_51
Last ObjectModification: 2018_07_18-PM-02_36_21

Theory : constructive!set!theory


Home Index