Nuprl Lemma : orderedpair-second

a,b:coSet{i:l}.  seteq(snds((a,b));{b})


Proof




Definitions occuring in Statement :  orderedpair-snds: snds(pr) orderedpairset: (a,b) singleset: {a} seteq: seteq(s1;s2) coSet: coSet{i:l} all: x:A. B[x]
Definitions unfolded in proof :  or: P ∨ Q cand: c∧ B exists: x:A. B[x] orderedpairset: (a,b) guard: {T} set-predicate: set-predicate{i:l}(s;a.P[a]) so_apply: x[s] prop: so_lambda: λ2x.t[x] orderedpair-snds: snds(pr) implies:  Q rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  setmem-pairset or_wf pairset_wf setmem-unionset setmem_functionality_1 seteq-orderedpairs-iff seteq_inversion iff_wf sub-set_wf setmem-singleset orderedpairset_functionality seteq_weakening seteq_functionality setmem_wf orderedpair-fst_wf seteq_wf unionset_wf setmem-sub-coset fst-orderedpairset coSet_wf singleset_wf orderedpairset_wf orderedpair-snds_wf co-seteq-iff
Rules used in proof :  inrFormation dependent_pairFormation andLevelFunctionality productEquality cumulativity setEquality rename setElimination lambdaEquality sqequalRule impliesFunctionality independent_pairFormation addLevel because_Cache independent_functionElimination productElimination hypothesis hypothesisEquality isectElimination thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}a,b:coSet\{i:l\}.    seteq(snds((a,b));\{b\})



Date html generated: 2018_07_29-AM-10_02_22
Last ObjectModification: 2018_07_18-PM-03_07_15

Theory : constructive!set!theory


Home Index