Nuprl Lemma : setmem-sub-coset

s:coSet{i:l}
  ∀[P:{a:coSet{i:l}| (a ∈ s)}  ⟶ ℙ]
    (set-predicate{i:l}(s;a.P[a])  (∀a:coSet{i:l}. ((a ∈ {a ∈ P[a]}) ⇐⇒ (a ∈ s) ∧ P[a])))


Proof




Definitions occuring in Statement :  sub-set: {a ∈ P[a]} set-predicate: set-predicate{i:l}(s;a.P[a]) setmem: (x ∈ s) coSet: coSet{i:l} uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B sub-set: {a ∈ P[a]} Wsup: Wsup(a;b) mk-set: f"(T) top: Top exists: x:A. B[x] pi1: fst(t) cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} set-predicate: set-predicate{i:l}(s;a.P[a]) mk-coset: mk-coset(T;f) set-item: set-item(s;x) set-dom: set-dom(s) pi2: snd(t)
Lemmas referenced :  subtype_coSet coSet_subtype setmem-mk-set-sq istype-void seteq_wf setmem_wf sub-set_wf subtype_rel_self set-predicate_wf coSet_wf seteq_inversion setmem-coset setmem-iff mk-coset_wf seteq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt independent_pairFormation hypothesis_subsumption cut introduction extract_by_obid hypothesis hypothesisEquality applyEquality sqequalHypSubstitution sqequalRule productElimination thin isectElimination isect_memberEquality_alt voidElimination dependent_pairFormation_alt universeIsType lambdaEquality_alt cumulativity inhabitedIsType setElimination rename dependent_set_memberEquality_alt setIsType productIsType instantiate universeEquality because_Cache functionIsType dependent_functionElimination independent_functionElimination dependent_pairEquality_alt

Latex:
\mforall{}s:coSet\{i:l\}
    \mforall{}[P:\{a:coSet\{i:l\}|  (a  \mmember{}  s)\}    {}\mrightarrow{}  \mBbbP{}]
        (set-predicate\{i:l\}(s;a.P[a])  {}\mRightarrow{}  (\mforall{}a:coSet\{i:l\}.  ((a  \mmember{}  \{a  \mmember{}  s  |  P[a]\})  \mLeftarrow{}{}\mRightarrow{}  (a  \mmember{}  s)  \mwedge{}  P[a])))



Date html generated: 2019_10_31-AM-06_33_16
Last ObjectModification: 2018_11_12-AM-09_30_54

Theory : constructive!set!theory


Home Index