Nuprl Lemma : cc-snd-csm-adjoin
∀[Gamma,Delta:CubicalSet]. ∀[A:{Gamma ⊢ _}]. ∀[sigma:Delta ⟶ Gamma]. ∀[u:{Delta ⊢ _:(A)sigma}].
  ((q)(sigma;u) = u ∈ {Delta ⊢ _:(A)sigma})
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u), 
cc-snd: q, 
csm-ap-term: (t)s, 
cubical-term: {X ⊢ _:AF}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
uall: ∀[x:A]. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-term: {X ⊢ _:AF}, 
csm-adjoin: (s;u), 
csm-ap: (s)x, 
pi2: snd(t), 
cc-snd: q, 
csm-ap-term: (t)s, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
cubical-type: {X ⊢ _}, 
pi1: fst(t)
Lemmas referenced : 
cubical-term_wf, 
csm-ap-type_wf, 
cube-set-map_wf, 
cubical-type_wf, 
cubical-set_wf, 
I-cube_wf, 
coordinate_name_wf, 
list_wf, 
name-morph_wf, 
cube-set-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
equalitySymmetry, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesis, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
applyEquality, 
functionExtensionality, 
lambdaFormation_alt, 
equalityIsType1, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination, 
functionIsType, 
because_Cache, 
productElimination
Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[sigma:Delta  {}\mrightarrow{}  Gamma].  \mforall{}[u:\{Delta  \mvdash{}  \_:(A)sigma\}].
    ((q)(sigma;u)  =  u)
Date html generated:
2019_11_05-PM-00_26_18
Last ObjectModification:
2018_11_08-PM-00_51_44
Theory : cubical!sets
Home
Index