Nuprl Lemma : csm-ap-cubical-lambda
∀[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠA B}]. ∀[u:{X ⊢ _:A}]. ∀[s:Delta ⟶ X].
  ((app(w; u))s = app((w)s; (u)s) ∈ {Delta ⊢ _:((B)[u])s})
Proof
Definitions occuring in Statement : 
cubical-app: app(w; u)
, 
cubical-pi: ΠA B
, 
csm-id-adjoin: [u]
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:AF}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
csm-ap-cubical-app, 
cube-set-map_wf, 
cubical-term_wf, 
cubical-pi_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical-set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
\mforall{}[s:Delta  {}\mrightarrow{}  X].
    ((app(w;  u))s  =  app((w)s;  (u)s))
Date html generated:
2016_06_16-PM-05_47_20
Last ObjectModification:
2015_12_28-PM-04_32_24
Theory : cubical!sets
Home
Index