Nuprl Lemma : csm-ap-cubical-lambda

[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠB}]. ∀[u:{X ⊢ _:A}]. ∀[s:Delta ⟶ X].
  ((app(w; u))s app((w)s; (u)s) ∈ {Delta ⊢ _:((B)[u])s})


Proof




Definitions occuring in Statement :  cubical-app: app(w; u) cubical-pi: ΠB csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  csm-ap-cubical-app cube-set-map_wf cubical-term_wf cubical-pi_wf cubical-type_wf cube-context-adjoin_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].
\mforall{}[s:Delta  {}\mrightarrow{}  X].
    ((app(w;  u))s  =  app((w)s;  (u)s))



Date html generated: 2016_06_16-PM-05_47_20
Last ObjectModification: 2015_12_28-PM-04_32_24

Theory : cubical!sets


Home Index