Nuprl Lemma : csm-id-adjoin-ap

X:CubicalSet. ∀A:{X ⊢ _}. ∀u:{X ⊢ _:A}. ∀I:Cname List. ∀a:X(I).  (([u])a (a;u a) ∈ X.A(I))


Proof




Definitions occuring in Statement :  csm-id-adjoin: [u] cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-term: {X ⊢ _:AF} cubical-type: {X ⊢ _} csm-ap: (s)x I-cube: X(I) cubical-set: CubicalSet coordinate_name: Cname list: List all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] cubical-term: {X ⊢ _:AF} csm-id-adjoin: [u] csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) identity-trans: identity-trans(C;D;F) cat-id: cat-id(C) type-cat: TypeCat pi2: snd(t) pi1: fst(t) cc-adjoin-cube: (v;u) member: t ∈ T cubical-type-at: A(a) uall: [x:A]. B[x]
Lemmas referenced :  cc-adjoin-cube_wf I-cube_wf list_wf coordinate_name_wf cubical-term_wf cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution setElimination thin rename sqequalRule lemma_by_obid dependent_functionElimination hypothesisEquality applyEquality hypothesis isectElimination

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}u:\{X  \mvdash{}  \_:A\}.  \mforall{}I:Cname  List.  \mforall{}a:X(I).    (([u])a  =  (a;u  I  a))



Date html generated: 2016_06_16-PM-05_41_44
Last ObjectModification: 2015_12_28-PM-04_34_20

Theory : cubical!sets


Home Index