Step
*
1
1
1
1
of Lemma
cubical-interval-filler-fills
1. I : Cname List
2. x : nameset(I)
3. i : ℕ2
4. bx : open_box(cubical-interval();I;[];x;i)
5. j : ℕ||bx||
6. open_box(cubical-interval();I;[];x;i) ≡ {L:I-face(cubical-interval();I) List|
(||L|| = 1 ∈ ℤ) ∧ (face-name(hd(L)) = <x, i> ∈ (nameset(I) × ℕ2))}
⊢ is-face(cubical-interval();I;cube(hd(bx));bx[j])
BY
{ (MoveToConcl (-2)
THEN D -1
THEN (GenConcl ⌜bx
= L
∈ {L:I-face(cubical-interval();I) List|
(||L|| = 1 ∈ ℤ) ∧ (face-name(hd(L)) = <x, i> ∈ (nameset(I) × ℕ2))} ⌝⋅
THENA (DoSubsume THEN Auto)
)
THEN All Thin
THEN D -1
THEN (D -2
THENL [(Assert ⌜False⌝⋅ THEN Auto)
; TACTIC:(D -2
THENL [(RepUR ``is-face`` 0 THEN (D 0 THENA Auto) THEN IntSegCases (-1) THEN Reduce 0)
; (Assert ⌜False⌝⋅ THEN Auto')]
)]
)) }
1
1. I : Cname List
2. x : nameset(I)
3. i : ℕ2
4. u : I-face(cubical-interval();I)
5. (||[u]|| = 1 ∈ ℤ) ∧ (face-name(hd([u])) = <x, i> ∈ (nameset(I) × ℕ2))
6. j : ℤ
7. j = 0 ∈ ℤ
⊢ (dimension(u):=direction(u))(cube(u)) = cube(u) ∈ cubical-interval()(I-[dimension(u)])
Latex:
Latex:
1. I : Cname List
2. x : nameset(I)
3. i : \mBbbN{}2
4. bx : open\_box(cubical-interval();I;[];x;i)
5. j : \mBbbN{}||bx||
6. open\_box(cubical-interval();I;[];x;i) \mequiv{} \{L:I-face(cubical-interval();I) List|
(||L|| = 1) \mwedge{} (face-name(hd(L)) = <x, i>)\}
\mvdash{} is-face(cubical-interval();I;cube(hd(bx));bx[j])
By
Latex:
(MoveToConcl (-2)
THEN D -1
THEN (GenConcl \mkleeneopen{}bx = L\mkleeneclose{}\mcdot{} THENA (DoSubsume THEN Auto))
THEN All Thin
THEN D -1
THEN (D -2
THENL [(Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto)
; TACTIC:(D -2
THENL [(RepUR ``is-face`` 0
THEN (D 0 THENA Auto)
THEN IntSegCases (-1)
THEN Reduce 0)
; (Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto')]
)]
))
Home
Index