Step
*
1
1
1
1
1
of Lemma
cubical-interval-filler-fills
1. I : Cname List
2. x : nameset(I)
3. i : ℕ2
4. u : I-face(cubical-interval();I)
5. (||[u]|| = 1 ∈ ℤ) ∧ (face-name(hd([u])) = <x, i> ∈ (nameset(I) × ℕ2))
6. j : ℤ
7. j = 0 ∈ ℤ
⊢ (dimension(u):=direction(u))(cube(u)) = cube(u) ∈ cubical-interval()(I-[dimension(u)])
BY
{ ((GenConclTerm ⌜cube(u)⌝⋅ THENA Auto)
THEN Thin (-1)
THEN MoveToConcl (-1)
THEN GenConclTerms Auto [⌜dimension(u)⌝;⌜direction(u)⌝]⋅
THEN All Thin
THEN Auto) }
1
1. I : Cname List
2. v : nameset(I)
3. v1 : ℕ2
4. v@0 : cubical-interval()(I-[v])
⊢ (v:=v1)(v@0) = v@0 ∈ cubical-interval()(I-[v])
Latex:
Latex:
1. I : Cname List
2. x : nameset(I)
3. i : \mBbbN{}2
4. u : I-face(cubical-interval();I)
5. (||[u]|| = 1) \mwedge{} (face-name(hd([u])) = <x, i>)
6. j : \mBbbZ{}
7. j = 0
\mvdash{} (dimension(u):=direction(u))(cube(u)) = cube(u)
By
Latex:
((GenConclTerm \mkleeneopen{}cube(u)\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN MoveToConcl (-1)
THEN GenConclTerms Auto [\mkleeneopen{}dimension(u)\mkleeneclose{};\mkleeneopen{}direction(u)\mkleeneclose{}]\mcdot{}
THEN All Thin
THEN Auto)
Home
Index