Step
*
1
2
2
2
2
1
1
1
of Lemma
lift-reduce-face-map
1. I : Cname List
2. x : nameset(I)
3. c : ℕ2
4. i : ℕ2
5. v : Cname
6. ¬(v ∈ I)
7. ¬(v ∈ [x])
8. I-[x]-[v] = I-[x] ∈ (Cname List)
9. [v / I]-[x]-[v] = I-[x] ∈ (Cname List)
10. [v / I]-[x] = [v / I-[x]] ∈ (Cname List)
11. ((iota(v) o (x:=i)) o (v:=c)) = (iota(v) o ((x:=i) o (v:=c))) ∈ name-morph(I;[v / I-[x]]-[v])
12. (((x:=i) o iota(v)) o (v:=c)) = ((x:=i) o (iota(v) o (v:=c))) ∈ name-morph(I;[v / I-[x]]-[v])
⊢ ((iota(v) o (x:=i)) o (v:=c)) = (x:=i) ∈ name-morph(I;I-[x])
BY
{ Assert ⌜[v / I-[x]]-[v] = I-[x] ∈ (Cname List)⌝⋅ }
1
.....assertion.....
1. I : Cname List
2. x : nameset(I)
3. c : ℕ2
4. i : ℕ2
5. v : Cname
6. ¬(v ∈ I)
7. ¬(v ∈ [x])
8. I-[x]-[v] = I-[x] ∈ (Cname List)
9. [v / I]-[x]-[v] = I-[x] ∈ (Cname List)
10. [v / I]-[x] = [v / I-[x]] ∈ (Cname List)
11. ((iota(v) o (x:=i)) o (v:=c)) = (iota(v) o ((x:=i) o (v:=c))) ∈ name-morph(I;[v / I-[x]]-[v])
12. (((x:=i) o iota(v)) o (v:=c)) = ((x:=i) o (iota(v) o (v:=c))) ∈ name-morph(I;[v / I-[x]]-[v])
⊢ [v / I-[x]]-[v] = I-[x] ∈ (Cname List)
2
1. I : Cname List
2. x : nameset(I)
3. c : ℕ2
4. i : ℕ2
5. v : Cname
6. ¬(v ∈ I)
7. ¬(v ∈ [x])
8. I-[x]-[v] = I-[x] ∈ (Cname List)
9. [v / I]-[x]-[v] = I-[x] ∈ (Cname List)
10. [v / I]-[x] = [v / I-[x]] ∈ (Cname List)
11. ((iota(v) o (x:=i)) o (v:=c)) = (iota(v) o ((x:=i) o (v:=c))) ∈ name-morph(I;[v / I-[x]]-[v])
12. (((x:=i) o iota(v)) o (v:=c)) = ((x:=i) o (iota(v) o (v:=c))) ∈ name-morph(I;[v / I-[x]]-[v])
13. [v / I-[x]]-[v] = I-[x] ∈ (Cname List)
⊢ ((iota(v) o (x:=i)) o (v:=c)) = (x:=i) ∈ name-morph(I;I-[x])
Latex:
Latex:
1. I : Cname List
2. x : nameset(I)
3. c : \mBbbN{}2
4. i : \mBbbN{}2
5. v : Cname
6. \mneg{}(v \mmember{} I)
7. \mneg{}(v \mmember{} [x])
8. I-[x]-[v] = I-[x]
9. [v / I]-[x]-[v] = I-[x]
10. [v / I]-[x] = [v / I-[x]]
11. ((iota(v) o (x:=i)) o (v:=c)) = (iota(v) o ((x:=i) o (v:=c)))
12. (((x:=i) o iota(v)) o (v:=c)) = ((x:=i) o (iota(v) o (v:=c)))
\mvdash{} ((iota(v) o (x:=i)) o (v:=c)) = (x:=i)
By
Latex:
Assert \mkleeneopen{}[v / I-[x]]-[v] = I-[x]\mkleeneclose{}\mcdot{}
Home
Index