Nuprl Lemma : lift-reduce-face-map
∀[I:Cname List]. ∀[x:nameset(I)]. ∀[c,i:ℕ2].
  ((iota(fresh-cname(I)) o ((x:=i) o (fresh-cname(I):=c))) = (x:=i) ∈ name-morph(I;I-[x]))
Proof
Definitions occuring in Statement : 
name-comp: (f o g)
, 
iota: iota(x)
, 
face-map: (x:=i)
, 
name-morph: name-morph(I;J)
, 
fresh-cname: fresh-cname(I)
, 
nameset: nameset(L)
, 
cname_deq: CnameDeq
, 
coordinate_name: Cname
, 
list-diff: as-bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
nameset: nameset(L)
, 
prop: ℙ
, 
false: False
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
select: L[n]
, 
cons: [a / b]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
label: ...$L... t
Lemmas referenced : 
fresh-cname_wf, 
int_seg_wf, 
nameset_wf, 
list_wf, 
coordinate_name_wf, 
l_member_wf, 
cons_wf, 
nil_wf, 
member_singleton, 
istype-le, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
list-diff-disjoint, 
cname_deq_wf, 
list-diff_wf, 
l_disjoint_singleton, 
member-list-diff, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
deq_wf, 
list-diff-cons, 
subtype_rel_self, 
iff_weakening_equal, 
deq_member_cons_lemma, 
istype-void, 
deq_member_nil_lemma, 
bor_wf, 
bfalse_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
deq-member_wf, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
length_wf, 
ite_rw_true, 
btrue_wf, 
assert_of_tt, 
length_of_cons_lemma, 
length_of_nil_lemma, 
istype-less_than, 
select_wf, 
nat_properties, 
sq_stable__le, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
name-comp-assoc, 
iota_wf, 
face-map_wf2, 
list_subtype_base, 
name-comp-id-right, 
name-morph_wf, 
name-comp_wf, 
iota-identity, 
iota-face-map, 
cons_member, 
name-morph_subtype, 
nameset_subtype, 
l_subset_wf, 
l_subset_refl, 
equal_functionality_wrt_subtype_rel2, 
face-map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
setElimination, 
rename, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
hyp_replacement, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
voidElimination, 
because_Cache, 
applyEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
sqequalBase, 
inlFormation_alt
Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[c,i:\mBbbN{}2].
    ((iota(fresh-cname(I))  o  ((x:=i)  o  (fresh-cname(I):=c)))  =  (x:=i))
Date html generated:
2020_05_21-AM-10_49_12
Last ObjectModification:
2019_12_08-PM-07_06_33
Theory : cubical!sets
Home
Index