Nuprl Lemma : lift-reduce-face-map

[I:Cname List]. ∀[x:nameset(I)]. ∀[c,i:ℕ2].
  ((iota(fresh-cname(I)) ((x:=i) (fresh-cname(I):=c))) (x:=i) ∈ name-morph(I;I-[x]))


Proof




Definitions occuring in Statement :  name-comp: (f g) iota: iota(x) face-map: (x:=i) name-morph: name-morph(I;J) fresh-cname: fresh-cname(I) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q not: ¬A nameset: nameset(L) prop: false: False coordinate_name: Cname int_upper: {i...} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q less_than: a < b squash: T iff: ⇐⇒ Q uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True subtype_rel: A ⊆B rev_implies:  Q top: Top deq: EqDecider(T) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) select: L[n] cons: [a b] cand: c∧ B sq_stable: SqStable(P) ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) label: ...$L... t
Lemmas referenced :  fresh-cname_wf int_seg_wf nameset_wf list_wf coordinate_name_wf l_member_wf cons_wf nil_wf member_singleton istype-le subtype_base_sq set_subtype_base le_wf int_subtype_base list-diff-disjoint cname_deq_wf list-diff_wf l_disjoint_singleton member-list-diff equal_wf squash_wf true_wf istype-universe deq_wf list-diff-cons subtype_rel_self iff_weakening_equal deq_member_cons_lemma istype-void deq_member_nil_lemma bor_wf bfalse_wf eqtt_to_assert assert-deq-member eqff_to_assert deq-member_wf bool_cases_sqequal bool_wf bool_subtype_base assert-bnot length_wf ite_rw_true btrue_wf assert_of_tt length_of_cons_lemma length_of_nil_lemma istype-less_than select_wf nat_properties sq_stable__le int_seg_properties sq_stable__l_member decidable__equal-coordinate_name decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf name-comp-assoc iota_wf face-map_wf2 list_subtype_base name-comp-id-right name-morph_wf name-comp_wf iota-identity iota-face-map cons_member name-morph_subtype nameset_subtype l_subset_wf l_subset_refl equal_functionality_wrt_subtype_rel2 face-map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt setElimination rename equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination sqequalRule isect_memberEquality_alt axiomEquality isectIsTypeImplies universeIsType natural_numberEquality dependent_set_memberEquality_alt productElimination imageElimination instantiate cumulativity independent_isectElimination intEquality lambdaEquality_alt hyp_replacement independent_pairFormation productIsType applyLambdaEquality voidElimination because_Cache applyEquality universeEquality imageMemberEquality baseClosed unionElimination equalityElimination dependent_pairFormation_alt promote_hyp approximateComputation int_eqEquality Error :memTop,  sqequalBase inlFormation_alt

Latex:
\mforall{}[I:Cname  List].  \mforall{}[x:nameset(I)].  \mforall{}[c,i:\mBbbN{}2].
    ((iota(fresh-cname(I))  o  ((x:=i)  o  (fresh-cname(I):=c)))  =  (x:=i))



Date html generated: 2020_05_21-AM-10_49_12
Last ObjectModification: 2019_12_08-PM-07_06_33

Theory : cubical!sets


Home Index