Step * 1 1 2 of Lemma open_box-nil


1. CubicalSet
2. Cname List
3. nameset(I)
4. : ℕ2
5. I-face(X;I)
6. I-face(X;I) List
7. adjacent-compatible(X;I;[u v])
8. ¬(x ∈ [])
9. l_subset(Cname;[];I)
10. ∀y:nameset([]). ∀c:ℕ2.  (∃f∈[u v]. face-name(f) = <y, c> ∈ (nameset(I) × ℕ2))
11. (∃f∈[u v]. face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
12. (∀f∈[u v].¬(face-name(f) = <x, i> ∈ (nameset(I) × ℕ2)))
13. (∀f∈[u v].(fst(f) ∈ [x]))
14. (∀f1,f2∈[u v].  ¬(face-name(f1) face-name(f2) ∈ (nameset(I) × ℕ2)))
⊢ (||[u v]|| 1 ∈ ℤ) ∧ (face-name(hd([u v])) = <x, i> ∈ (nameset(I) × ℕ2))
BY
TACTIC:DVar `v' }

1
1. CubicalSet
2. Cname List
3. nameset(I)
4. : ℕ2
5. I-face(X;I)
6. adjacent-compatible(X;I;[u])
7. ¬(x ∈ [])
8. l_subset(Cname;[];I)
9. ∀y:nameset([]). ∀c:ℕ2.  (∃f∈[u]. face-name(f) = <y, c> ∈ (nameset(I) × ℕ2))
10. (∃f∈[u]. face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
11. (∀f∈[u].¬(face-name(f) = <x, i> ∈ (nameset(I) × ℕ2)))
12. (∀f∈[u].(fst(f) ∈ [x]))
13. (∀f1,f2∈[u].  ¬(face-name(f1) face-name(f2) ∈ (nameset(I) × ℕ2)))
⊢ (||[u]|| 1 ∈ ℤ) ∧ (face-name(hd([u])) = <x, i> ∈ (nameset(I) × ℕ2))

2
1. CubicalSet
2. Cname List
3. nameset(I)
4. : ℕ2
5. I-face(X;I)
6. u1 I-face(X;I)
7. I-face(X;I) List
8. adjacent-compatible(X;I;[u; [u1 v]])
9. ¬(x ∈ [])
10. l_subset(Cname;[];I)
11. ∀y:nameset([]). ∀c:ℕ2.  (∃f∈[u; [u1 v]]. face-name(f) = <y, c> ∈ (nameset(I) × ℕ2))
12. (∃f∈[u; [u1 v]]. face-name(f) = <x, i> ∈ (nameset(I) × ℕ2))
13. (∀f∈[u; [u1 v]].¬(face-name(f) = <x, i> ∈ (nameset(I) × ℕ2)))
14. (∀f∈[u; [u1 v]].(fst(f) ∈ [x]))
15. (∀f1,f2∈[u; [u1 v]].  ¬(face-name(f1) face-name(f2) ∈ (nameset(I) × ℕ2)))
⊢ (||[u; [u1 v]]|| 1 ∈ ℤ) ∧ (face-name(hd([u; [u1 v]])) = <x, i> ∈ (nameset(I) × ℕ2))


Latex:


Latex:

1.  X  :  CubicalSet
2.  I  :  Cname  List
3.  x  :  nameset(I)
4.  i  :  \mBbbN{}2
5.  u  :  I-face(X;I)
6.  v  :  I-face(X;I)  List
7.  adjacent-compatible(X;I;[u  /  v])
8.  \mneg{}(x  \mmember{}  [])
9.  l\_subset(Cname;[];I)
10.  \mforall{}y:nameset([]).  \mforall{}c:\mBbbN{}2.    (\mexists{}f\mmember{}[u  /  v].  face-name(f)  =  <y,  c>)
11.  (\mexists{}f\mmember{}[u  /  v].  face-name(f)  =  <x,  i>)
12.  (\mforall{}f\mmember{}[u  /  v].\mneg{}(face-name(f)  =  <x,  1  -  i>))
13.  (\mforall{}f\mmember{}[u  /  v].(fst(f)  \mmember{}  [x]))
14.  (\mforall{}f1,f2\mmember{}[u  /  v].    \mneg{}(face-name(f1)  =  face-name(f2)))
\mvdash{}  (||[u  /  v]||  =  1)  \mwedge{}  (face-name(hd([u  /  v]))  =  <x,  i>)


By


Latex:
TACTIC:DVar  `v'




Home Index