Nuprl Lemma : closed-cubical-type-cumulativity
{ * ⊢ _} ⊆r { * ⊢' _}
Proof
Definitions occuring in Statement : 
closed-cubical-type: { * ⊢ _}
, 
subtype_rel: A ⊆r B
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
closed-cubical-type: { * ⊢ _}
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
Lemmas referenced : 
fset_wf, 
nat_wf, 
names-hom_wf, 
nh-id_wf, 
nh-comp_wf, 
closed-cubical-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
productElimination, 
dependent_set_memberEquality_alt, 
dependent_pairEquality_alt, 
functionExtensionality, 
cumulativity, 
applyEquality, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
equalityIstype, 
because_Cache
Latex:
\{  *  \mvdash{}  \_\}  \msubseteq{}r  \{  *  \mvdash{}'  \_\}
Date html generated:
2020_05_20-PM-01_50_37
Last ObjectModification:
2020_03_20-AM-10_56_14
Theory : cubical!type!theory
Home
Index