Nuprl Lemma : closed-cubical-type-cumulativity

* ⊢ _} ⊆* ⊢_}


Proof




Definitions occuring in Statement :  closed-cubical-type: * ⊢ _} subtype_rel: A ⊆B
Definitions unfolded in proof :  subtype_rel: A ⊆B member: t ∈ T closed-cubical-type: * ⊢ _} and: P ∧ Q uall: [x:A]. B[x] cand: c∧ B all: x:A. B[x]
Lemmas referenced :  fset_wf nat_wf names-hom_wf nh-id_wf nh-comp_wf closed-cubical-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution setElimination thin rename cut productElimination dependent_set_memberEquality_alt dependent_pairEquality_alt functionExtensionality cumulativity applyEquality hypothesisEquality introduction extract_by_obid isectElimination hypothesis functionIsType universeIsType inhabitedIsType independent_pairFormation sqequalRule productIsType equalityIstype because_Cache

Latex:
\{  *  \mvdash{}  \_\}  \msubseteq{}r  \{  *  \mvdash{}'  \_\}



Date html generated: 2020_05_20-PM-01_50_37
Last ObjectModification: 2020_03_20-AM-10_56_14

Theory : cubical!type!theory


Home Index