Nuprl Lemma : composition-function-subset

[Y,X:j⊢].
  ∀[B:{X ⊢ _}]. (composition-function{j:l,i:l}(X;B) ⊆composition-function{j:l,i:l}(Y;B)) 
  supposing sub_cubical_set{j:l}(Y; X)


Proof




Definitions occuring in Statement :  composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-type: {X ⊢ _} sub_cubical_set: Y ⊆ X cubical_set: CubicalSet uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a subtype_rel: A ⊆B member: t ∈ T composition-function: composition-function{j:l,i:l}(Gamma;A) csm-id-adjoin: [u] csm-id: 1(X) guard: {T}
Lemmas referenced :  composition-function_wf cubical-type_wf sub_cubical_set_wf cubical_set_wf cube_set_map_subtype3 cube-context-adjoin_wf interval-type_wf sub_cubical_set_self constrained-cubical-term_wf csm-ap-type_wf cubical_set_cumulativity-i-j csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 csm-ap-term_wf context-subset_wf csm-context-subset-subtype3 subset-cubical-type cubical-term_wf face-type_wf cube_set_map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaEquality_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis instantiate inhabitedIsType functionExtensionality applyEquality because_Cache independent_isectElimination sqequalRule equalityTransitivity equalitySymmetry

Latex:
\mforall{}[Y,X:j\mvdash{}].
    \mforall{}[B:\{X  \mvdash{}  \_\}].  (composition-function\{j:l,i:l\}(X;B)  \msubseteq{}r  composition-function\{j:l,i:l\}(Y;B)) 
    supposing  sub\_cubical\_set\{j:l\}(Y;  X)



Date html generated: 2020_05_20-PM-04_22_58
Last ObjectModification: 2020_04_13-PM-00_33_41

Theory : cubical!type!theory


Home Index