Nuprl Lemma : composition-op-universe-sq
∀[G:Top]
  (G ⊢ CompOp(c𝕌) ~ {comp:I:fset(ℕ)
                     ⟶ i:{i:ℕ| ¬i ∈ I} 
                     ⟶ rho:G(I+i)
                     ⟶ phi:𝔽(I)
                     ⟶ u:{I+i,s(phi) ⊢ _:c𝕌}
                     ⟶ {a0:FibrantType(formal-cube(I))| 
                         ∀J:fset(ℕ). ∀f:I,phi(J).
                           (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a0)
                           = u((i0) ⋅ f)
                           ∈ FibrantType(formal-cube(J)))} 
                     ⟶ {a1:FibrantType(formal-cube(I))| 
                         ∀J:fset(ℕ). ∀f:I,phi(J).
                           (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a1)
                           = u((i1) ⋅ f)
                           ∈ FibrantType(formal-cube(J)))} | 
                     ∀I,J:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀j:{j:ℕ| ¬j ∈ J} . ∀g:J ⟶ I. ∀rho:G(I+i). ∀phi:𝔽(I).
                     ∀u:{I+i,s(phi) ⊢ _:c𝕌}. ∀a0:{a0:FibrantType(formal-cube(I))| 
                                                  ∀J:fset(ℕ). ∀f:I,phi(J).
                                                    (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a0)
                                                    = u((i0) ⋅ f)
                                                    ∈ FibrantType(formal-cube(J)))} .
                       (csm-fibrant-type(formal-cube(I);formal-cube(J);<g>comp I i rho phi u a0)
                       = (comp J j g,i=j(rho) g(phi) (u)subset-trans(I+i;J+j;g,i=j;s(phi)) 
                          csm-fibrant-type(formal-cube(I);formal-cube(J);<g>a0))
                       ∈ FibrantType(formal-cube(J)))} )
Proof
Definitions occuring in Statement : 
cubical-universe: c𝕌
, 
csm-fibrant-type: csm-fibrant-type(G;H;s;FT)
, 
fibrant-type: FibrantType(X)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
csm-ap-term: (t)s
, 
cubical-term-at: u(a)
, 
cubical-term: {X ⊢ _:A}
, 
subset-trans: subset-trans(I;J;f;x)
, 
cubical-subset: I,psi
, 
face-presheaf: 𝔽
, 
context-map: <rho>
, 
formal-cube: formal-cube(I)
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
nc-e': g,i=j
, 
nc-1: (i1)
, 
nc-0: (i0)
, 
nc-s: s
, 
add-name: I+i
, 
nh-comp: g ⋅ f
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
composition-op: Gamma ⊢ CompOp(A)
, 
composition-uniformity: composition-uniformity(Gamma;A;comp)
, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u)
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
, 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0)
, 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1)
, 
member: t ∈ T
, 
fibrant-type: FibrantType(X)
Lemmas referenced : 
csm-cubical-universe, 
cubical-universe-at, 
istype-top, 
cubical-universe-ap-morph
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
because_Cache
Latex:
\mforall{}[G:Top]
    (G  \mvdash{}  CompOp(c\mBbbU{})  \msim{}  \{comp:I:fset(\mBbbN{})
                                          {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
                                          {}\mrightarrow{}  rho:G(I+i)
                                          {}\mrightarrow{}  phi:\mBbbF{}(I)
                                          {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:c\mBbbU{}\}
                                          {}\mrightarrow{}  \{a0:FibrantType(formal-cube(I))| 
                                                  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).
                                                      (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a0)  =  u((i0)  \mcdot{}  f))\} 
                                          {}\mrightarrow{}  \{a1:FibrantType(formal-cube(I))| 
                                                  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).
                                                      (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a1)  =  u((i1)  \mcdot{}  f))\}  |\000C 
                                          \mforall{}I,J:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  .  \mforall{}g:J  {}\mrightarrow{}  I.  \mforall{}rho:G(I+i).
                                          \mforall{}phi:\mBbbF{}(I).  \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:c\mBbbU{}\}.
                                          \mforall{}a0:\{a0:FibrantType(formal-cube(I))| 
                                                    \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).
                                                        (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a0)  =  u((i0)  \mcdot{}  f))\}  \000C.
                                              (csm-fibrant-type(formal-cube(I);formal-cube(J);<g>comp  I  i  rho  phi  u  a0)
                                              =  (comp  J  j  g,i=j(rho)  g(phi)  (u)subset-trans(I+i;J+j;g,i=j;s(phi)) 
                                                    csm-fibrant-type(formal-cube(I);formal-cube(J);<g>a0)))\}  )
Date html generated:
2020_05_20-PM-07_24_34
Last ObjectModification:
2020_04_25-PM-10_04_19
Theory : cubical!type!theory
Home
Index