Nuprl Lemma : composition-op-universe-sq

[G:Top]
  (G ⊢ CompOp(c𝕌{comp:I:fset(ℕ)
                     ⟶ i:{i:ℕ| ¬i ∈ I} 
                     ⟶ rho:G(I+i)
                     ⟶ phi:𝔽(I)
                     ⟶ u:{I+i,s(phi) ⊢ _:c𝕌}
                     ⟶ {a0:FibrantType(formal-cube(I))| 
                         ∀J:fset(ℕ). ∀f:I,phi(J).
                           (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>;a0)
                           u((i0) ⋅ f)
                           ∈ FibrantType(formal-cube(J)))} 
                     ⟶ {a1:FibrantType(formal-cube(I))| 
                         ∀J:fset(ℕ). ∀f:I,phi(J).
                           (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>;a1)
                           u((i1) ⋅ f)
                           ∈ FibrantType(formal-cube(J)))} 
                     ∀I,J:fset(ℕ). ∀i:{i:ℕ| ¬i ∈ I} . ∀j:{j:ℕ| ¬j ∈ J} . ∀g:J ⟶ I. ∀rho:G(I+i). ∀phi:𝔽(I).
                     ∀u:{I+i,s(phi) ⊢ _:c𝕌}. ∀a0:{a0:FibrantType(formal-cube(I))| 
                                                  ∀J:fset(ℕ). ∀f:I,phi(J).
                                                    (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>;a0)
                                                    u((i0) ⋅ f)
                                                    ∈ FibrantType(formal-cube(J)))} .
                       (csm-fibrant-type(formal-cube(I);formal-cube(J);<g>;comp rho phi a0)
                       (comp g,i=j(rho) g(phi) (u)subset-trans(I+i;J+j;g,i=j;s(phi)) 
                          csm-fibrant-type(formal-cube(I);formal-cube(J);<g>;a0))
                       ∈ FibrantType(formal-cube(J)))} )


Proof




Definitions occuring in Statement :  cubical-universe: c𝕌 csm-fibrant-type: csm-fibrant-type(G;H;s;FT) fibrant-type: FibrantType(X) composition-op: Gamma ⊢ CompOp(A) csm-ap-term: (t)s cubical-term-at: u(a) cubical-term: {X ⊢ _:A} subset-trans: subset-trans(I;J;f;x) cubical-subset: I,psi face-presheaf: 𝔽 context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) nc-e': g,i=j nc-1: (i1) nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) member: t ∈ T fibrant-type: FibrantType(X)
Lemmas referenced :  csm-cubical-universe cubical-universe-at istype-top cubical-universe-ap-morph
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis because_Cache

Latex:
\mforall{}[G:Top]
    (G  \mvdash{}  CompOp(c\mBbbU{})  \msim{}  \{comp:I:fset(\mBbbN{})
                                          {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
                                          {}\mrightarrow{}  rho:G(I+i)
                                          {}\mrightarrow{}  phi:\mBbbF{}(I)
                                          {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:c\mBbbU{}\}
                                          {}\mrightarrow{}  \{a0:FibrantType(formal-cube(I))| 
                                                  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).
                                                      (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a0)  =  u((i0)  \mcdot{}  f))\} 
                                          {}\mrightarrow{}  \{a1:FibrantType(formal-cube(I))| 
                                                  \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).
                                                      (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a1)  =  u((i1)  \mcdot{}  f))\}  |\000C 
                                          \mforall{}I,J:fset(\mBbbN{}).  \mforall{}i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  .  \mforall{}j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  .  \mforall{}g:J  {}\mrightarrow{}  I.  \mforall{}rho:G(I+i).
                                          \mforall{}phi:\mBbbF{}(I).  \mforall{}u:\{I+i,s(phi)  \mvdash{}  \_:c\mBbbU{}\}.
                                          \mforall{}a0:\{a0:FibrantType(formal-cube(I))| 
                                                    \mforall{}J:fset(\mBbbN{}).  \mforall{}f:I,phi(J).
                                                        (csm-fibrant-type(formal-cube(I);formal-cube(J);<f>a0)  =  u((i0)  \mcdot{}  f))\}  \000C.
                                              (csm-fibrant-type(formal-cube(I);formal-cube(J);<g>comp  I  i  rho  phi  u  a0)
                                              =  (comp  J  j  g,i=j(rho)  g(phi)  (u)subset-trans(I+i;J+j;g,i=j;s(phi)) 
                                                    csm-fibrant-type(formal-cube(I);formal-cube(J);<g>a0)))\}  )



Date html generated: 2020_05_20-PM-07_24_34
Last ObjectModification: 2020_04_25-PM-10_04_19

Theory : cubical!type!theory


Home Index