Nuprl Lemma : context-subset-type-iota

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ({Gamma, phi ⊢ _:(A)iota} {Gamma, phi ⊢ _:A} ∈ 𝕌{[i' j']})


Proof




Definitions occuring in Statement :  context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical_set: CubicalSet uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} implies:  Q true: True
Lemmas referenced :  context-subset-ap-iota cubical-term_wf squash_wf true_wf cubical-type_wf cubical_set_wf context-subset_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 equal_functionality_wrt_subtype_rel2 face-type_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality instantiate lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType sqequalRule cumulativity because_Cache independent_isectElimination independent_functionElimination natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (\{Gamma,  phi  \mvdash{}  \_:(A)iota\}  =  \{Gamma,  phi  \mvdash{}  \_:A\})



Date html generated: 2020_05_20-PM-04_08_50
Last ObjectModification: 2020_04_10-AM-03_50_58

Theory : cubical!type!theory


Home Index