Nuprl Lemma : context-subset-type-iota
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[phi:{Gamma ⊢ _:𝔽}].  ({Gamma, phi ⊢ _:(A)iota} = {Gamma, phi ⊢ _:A} ∈ 𝕌{[i' | j']})
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
subset-iota: iota
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
true: True
Lemmas referenced : 
context-subset-ap-iota, 
cubical-term_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
cubical_set_wf, 
context-subset_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
equal_functionality_wrt_subtype_rel2, 
face-type_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
sqequalRule, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (\{Gamma,  phi  \mvdash{}  \_:(A)iota\}  =  \{Gamma,  phi  \mvdash{}  \_:A\})
Date html generated:
2020_05_20-PM-04_08_50
Last ObjectModification:
2020_04_10-AM-03_50_58
Theory : cubical!type!theory
Home
Index