Nuprl Lemma : csm+-comp-csm+

[H,K,X:j⊢]. ∀[A:{H ⊢ _}]. ∀[tau:K j⟶ H]. ∀[s:X j⟶ K].  (tau+ s+ tau s+ ∈ X.((A)tau)s ij⟶ H.A)


Proof




Definitions occuring in Statement :  csm+: tau+ cube-context-adjoin: X.A csm-ap-type: (AF)s cubical-type: {X ⊢ _} csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a squash: T true: True
Lemmas referenced :  csm+-comp-csm+-sq csm+_wf csm-comp_wf subtype_rel-equal cube_set_map_wf cube-context-adjoin_wf csm-ap-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-comp-type cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis hypothesisEquality applyEquality instantiate because_Cache independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeIsType inhabitedIsType

Latex:
\mforall{}[H,K,X:j\mvdash{}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[s:X  j{}\mrightarrow{}  K].    (tau+  o  s+  =  tau  o  s+)



Date html generated: 2020_05_20-PM-01_58_30
Last ObjectModification: 2020_04_21-AM-11_48_12

Theory : cubical!type!theory


Home Index