Nuprl Lemma : csm+-comp-csm+
∀[H,K,X:j⊢]. ∀[A:{H ⊢ _}]. ∀[tau:K j⟶ H]. ∀[s:X j⟶ K].  (tau+ o s+ = tau o s+ ∈ X.((A)tau)s ij⟶ H.A)
Proof
Definitions occuring in Statement : 
csm+: tau+
, 
cube-context-adjoin: X.A
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
csm-comp: G o F
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
csm+-comp-csm+-sq, 
csm+_wf, 
csm-comp_wf, 
subtype_rel-equal, 
cube_set_map_wf, 
cube-context-adjoin_wf, 
csm-ap-type_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-comp-type, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
instantiate, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[H,K,X:j\mvdash{}].  \mforall{}[A:\{H  \mvdash{}  \_\}].  \mforall{}[tau:K  j{}\mrightarrow{}  H].  \mforall{}[s:X  j{}\mrightarrow{}  K].    (tau+  o  s+  =  tau  o  s+)
Date html generated:
2020_05_20-PM-01_58_30
Last ObjectModification:
2020_04_21-AM-11_48_12
Theory : cubical!type!theory
Home
Index