Nuprl Lemma : csm-contractible_comp

[X,H,cA,A,tau:Top].  ((contractible_comp(X;A;cA))tau contractible_comp(H;(A)tau;(cA)tau))


Proof




Definitions occuring in Statement :  contractible_comp: contractible_comp(X;A;cA) csm-comp-structure: (cA)tau csm-ap-type: (AF)s uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T contractible_comp: contractible_comp(X;A;cA) top: Top csm-ap-type: (AF)s so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a csm-ap: (s)x cc-fst: p pi1: fst(t) csm+: tau+ csm-adjoin: (s;u) csm-comp: F compose: g csm-comp-structure: (cA)tau csm-ap-term: (t)s cc-snd: q pi2: snd(t)
Lemmas referenced :  csm-sigma_comp2 top_wf csm-pi_comp lifting-strict-spread strict4-spread csm-path_comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule hypothesis isect_memberEquality voidElimination voidEquality sqequalAxiom because_Cache baseClosed independent_isectElimination

Latex:
\mforall{}[X,H,cA,A,tau:Top].    ((contractible\_comp(X;A;cA))tau  \msim{}  contractible\_comp(H;(A)tau;(cA)tau))



Date html generated: 2017_01_10-AM-10_10_46
Last ObjectModification: 2016_12_24-AM-11_43_16

Theory : cubical!type!theory


Home Index