Nuprl Lemma : csm-contractible_comp
∀[X,H,cA,A,tau:Top].  ((contractible_comp(X;A;cA))tau ~ contractible_comp(H;(A)tau;(cA)tau))
Proof
Definitions occuring in Statement : 
contractible_comp: contractible_comp(X;A;cA)
, 
csm-comp-structure: (cA)tau
, 
csm-ap-type: (AF)s
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
contractible_comp: contractible_comp(X;A;cA)
, 
top: Top
, 
csm-ap-type: (AF)s
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
csm-ap: (s)x
, 
cc-fst: p
, 
pi1: fst(t)
, 
csm+: tau+
, 
csm-adjoin: (s;u)
, 
csm-comp: G o F
, 
compose: f o g
, 
csm-comp-structure: (cA)tau
, 
csm-ap-term: (t)s
, 
cc-snd: q
, 
pi2: snd(t)
Lemmas referenced : 
csm-sigma_comp2, 
top_wf, 
csm-pi_comp, 
lifting-strict-spread, 
strict4-spread, 
csm-path_comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
hypothesis, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalAxiom, 
because_Cache, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[X,H,cA,A,tau:Top].    ((contractible\_comp(X;A;cA))tau  \msim{}  contractible\_comp(H;(A)tau;(cA)tau))
Date html generated:
2017_01_10-AM-10_10_46
Last ObjectModification:
2016_12_24-AM-11_43_16
Theory : cubical!type!theory
Home
Index