Nuprl Lemma : csm-subtype-iso-instance1
∀[X,H:j⊢]. ∀[phi:{H ⊢ _:𝔽}].  (X j⟶ H.𝕀, (phi)p ⊆r X j⟶ H, phi.𝕀)
Proof
Definitions occuring in Statement : 
context-subset: Gamma, phi
, 
face-type: 𝔽
, 
interval-type: 𝕀
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
Lemmas referenced : 
cube-context-adjoin_wf, 
interval-type_wf, 
context-subset_wf, 
csm-subset-codomain, 
csm-ap-term_wf, 
face-type_wf, 
csm-face-type, 
cc-fst_wf, 
context-adjoin-subset1, 
cubical-term_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}[X,H:j\mvdash{}].  \mforall{}[phi:\{H  \mvdash{}  \_:\mBbbF{}\}].    (X  j{}\mrightarrow{}  H.\mBbbI{},  (phi)p  \msubseteq{}r  X  j{}\mrightarrow{}  H,  phi.\mBbbI{})
Date html generated:
2020_05_20-PM-03_05_52
Last ObjectModification:
2020_04_06-PM-07_34_51
Theory : cubical!type!theory
Home
Index