Nuprl Lemma : csm-subtype-iso-instance1
ā[X,H:jā¢]. ā[phi:{H ā¢ _:š½}]. (X jā¶ H.š, (phi)p ār X jā¶ H, phi.š)
Proof
Definitions occuring in Statement :
context-subset: Gamma, phi
,
face-type: š½
,
interval-type: š
,
cc-fst: p
,
cube-context-adjoin: X.A
,
csm-ap-term: (t)s
,
cubical-term: {X ā¢ _:A}
,
cube_set_map: A ā¶ B
,
cubical_set: CubicalSet
,
subtype_rel: A ār B
,
uall: ā[x:A]. B[x]
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
member: t ā T
,
uimplies: b supposing a
Lemmas referenced :
cube-context-adjoin_wf,
interval-type_wf,
context-subset_wf,
csm-subset-codomain,
csm-ap-term_wf,
face-type_wf,
csm-face-type,
cc-fst_wf,
context-adjoin-subset1,
cubical-term_wf,
cubical_set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
cut,
thin,
instantiate,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
Error :memTop,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
universeIsType,
inhabitedIsType
Latex:
\mforall{}[X,H:j\mvdash{}]. \mforall{}[phi:\{H \mvdash{} \_:\mBbbF{}\}]. (X j{}\mrightarrow{} H.\mBbbI{}, (phi)p \msubseteq{}r X j{}\mrightarrow{} H, phi.\mBbbI{})
Date html generated:
2020_05_20-PM-03_05_52
Last ObjectModification:
2020_04_06-PM-07_34_51
Theory : cubical!type!theory
Home
Index