Nuprl Lemma : dM-to-FL-1
∀[I:fset(ℕ)]. (dM-to-FL(I;1) = 1 ∈ Point(face_lattice(I)))
Proof
Definitions occuring in Statement : 
dM-to-FL: dM-to-FL(I;z)
, 
face_lattice: face_lattice(I)
, 
dM: dM(I)
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
fset: fset(T)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
DeMorgan-algebra: DeMorganAlgebra
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
dM-to-FL-eq-1, 
lattice-1_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
fset_wf, 
nat_wf
Rules used in proof : 
productElimination, 
because_Cache, 
universeEquality, 
cumulativity, 
independent_isectElimination, 
productEquality, 
lambdaEquality, 
instantiate, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[I:fset(\mBbbN{})].  (dM-to-FL(I;1)  =  1)
Date html generated:
2016_05_18-PM-00_12_48
Last ObjectModification:
2016_04_18-PM-07_08_52
Theory : cubical!type!theory
Home
Index