Nuprl Lemma : dM-to-FL-1

[I:fset(ℕ)]. (dM-to-FL(I;1) 1 ∈ Point(face_lattice(I)))


Proof




Definitions occuring in Statement :  dM-to-FL: dM-to-FL(I;z) face_lattice: face_lattice(I) dM: dM(I) lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) so_apply: x[s] uimplies: supposing a guard: {T} and: P ∧ Q prop: so_lambda: λ2x.t[x] DeMorgan-algebra: DeMorganAlgebra subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  dM-to-FL-eq-1 lattice-1_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-point_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf fset_wf nat_wf
Rules used in proof :  productElimination because_Cache universeEquality cumulativity independent_isectElimination productEquality lambdaEquality instantiate sqequalRule applyEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution lemma_by_obid cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[I:fset(\mBbbN{})].  (dM-to-FL(I;1)  =  1)



Date html generated: 2016_05_18-PM-00_12_48
Last ObjectModification: 2016_04_18-PM-07_08_52

Theory : cubical!type!theory


Home Index