Nuprl Lemma : equiv-bijection-property
∀A,B:Type. ∀e:{() ⊢ _:Equiv(discr(A);discr(B))}.  Bij(A;B;equiv-bijection(e))
Proof
Definitions occuring in Statement : 
equiv-bijection: equiv-bijection(e)
, 
cubical-equiv: Equiv(T;A)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
trivial-cube-set: ()
, 
biject: Bij(A;B;f)
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
Lemmas referenced : 
discrete-cubical-type_wf, 
cubical-equiv_wf, 
trivial-cube-set_wf, 
cubical-term_wf, 
equiv-bijection-is_wf
Rules used in proof : 
universeEquality, 
hypothesis, 
hypothesisEquality, 
cumulativity, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}A,B:Type.  \mforall{}e:\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}.    Bij(A;B;equiv-bijection(e))
Date html generated:
2017_02_21-AM-10_52_57
Last ObjectModification:
2017_02_13-PM-00_36_55
Theory : cubical!type!theory
Home
Index