Nuprl Lemma : equiv-bijection-property

A,B:Type. ∀e:{() ⊢ _:Equiv(discr(A);discr(B))}.  Bij(A;B;equiv-bijection(e))


Proof




Definitions occuring in Statement :  equiv-bijection: equiv-bijection(e) cubical-equiv: Equiv(T;A) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} trivial-cube-set: () biject: Bij(A;B;f) all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x]
Lemmas referenced :  discrete-cubical-type_wf cubical-equiv_wf trivial-cube-set_wf cubical-term_wf equiv-bijection-is_wf
Rules used in proof :  universeEquality hypothesis hypothesisEquality cumulativity thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}A,B:Type.  \mforall{}e:\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}.    Bij(A;B;equiv-bijection(e))



Date html generated: 2017_02_21-AM-10_52_57
Last ObjectModification: 2017_02_13-PM-00_36_55

Theory : cubical!type!theory


Home Index