Nuprl Lemma : equiv-bijection-property
∀A,B:Type. ∀e:{() ⊢ _:Equiv(discr(A);discr(B))}. Bij(A;B;equiv-bijection(e))
Proof
Definitions occuring in Statement :
equiv-bijection: equiv-bijection(e)
,
cubical-equiv: Equiv(T;A)
,
discrete-cubical-type: discr(T)
,
cubical-term: {X ⊢ _:A}
,
trivial-cube-set: ()
,
biject: Bij(A;B;f)
,
all: ∀x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
Lemmas referenced :
discrete-cubical-type_wf,
cubical-equiv_wf,
trivial-cube-set_wf,
cubical-term_wf,
equiv-bijection-is_wf
Rules used in proof :
universeEquality,
hypothesis,
hypothesisEquality,
cumulativity,
thin,
isectElimination,
sqequalHypSubstitution,
extract_by_obid,
cut,
introduction,
lambdaFormation,
sqequalReflexivity,
computationStep,
sqequalTransitivity,
sqequalSubstitution
Latex:
\mforall{}A,B:Type. \mforall{}e:\{() \mvdash{} \_:Equiv(discr(A);discr(B))\}. Bij(A;B;equiv-bijection(e))
Date html generated:
2017_02_21-AM-10_52_57
Last ObjectModification:
2017_02_13-PM-00_36_55
Theory : cubical!type!theory
Home
Index