Nuprl Lemma : equiv-bijection-is_wf
∀[A,B:Type]. ∀[e:{() ⊢ _:Equiv(discr(A);discr(B))}].  (equiv-bijection-is(e) ∈ Bij(A;B;equiv-bijection(e)))
Proof
Definitions occuring in Statement : 
equiv-bijection-is: equiv-bijection-is(e)
, 
equiv-bijection: equiv-bijection(e)
, 
cubical-equiv: Equiv(T;A)
, 
discrete-cubical-type: discr(T)
, 
cubical-term: {X ⊢ _:A}
, 
trivial-cube-set: ()
, 
biject: Bij(A;B;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv-bijection: equiv-bijection(e)
, 
member: t ∈ T
, 
equiv-bijection-is: equiv-bijection-is(e)
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
unit: Unit
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
pi1: fst(t)
, 
trivial-cube-set: ()
, 
cubical-type-at: A(a)
, 
discrete-cubical-type: discr(T)
, 
uimplies: b supposing a
, 
contractible-type: Contractible(A)
, 
cubical-fiber: Fiber(w;a)
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
discrete-cubical-term: discr(t)
, 
equiv-fun: equiv-fun(f)
, 
cubical-fst: p.1
, 
csm-id: 1(X)
, 
csm-ap-term: (t)s
, 
csm-ap: (s)x
, 
cubical-term-at: u(a)
, 
cc-snd: q
, 
cc-fst: p
, 
csm-ap-type: (AF)s
, 
csm-id-adjoin: [u]
, 
csm-comp: G o F
, 
cubical-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
csm-adjoin: (s;u)
, 
compose: f o g
, 
pi2: snd(t)
, 
exists: ∃x:A. B[x]
, 
cubical-app: app(w; u)
Lemmas referenced : 
equiv-contr_wf, 
discrete-cubical-type_wf, 
trivial-cube-set_wf, 
istype-cubical-term, 
cubical-equiv_wf, 
istype-universe, 
cubical-term-at_wf, 
discrete-fun_wf, 
equiv-fun_wf, 
empty-fset_wf, 
nat_wf, 
it_wf, 
subtype_rel_self, 
I_cube_wf, 
cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
path-type_wf, 
cc-fst_wf, 
csm-ap-term_wf, 
discrete-cubical-term_wf, 
cubical-app_wf_fun, 
cubical-fun_wf, 
csm-cubical-fun, 
cubical-term-eqcd, 
cc-snd_wf, 
csm-id-adjoin_wf, 
discrete-fun-at-app, 
cubical-fst_wf, 
cubical-fiber_wf, 
cubical-pi_wf, 
cubical-type-cumulativity2, 
cubical-pair_wf, 
cubical-refl_wf, 
csm-path-type, 
equal_wf, 
squash_wf, 
true_wf, 
cubical-type_wf, 
iff_weakening_equal, 
csm-discrete-cubical-type, 
csm-discrete-cubical-term, 
csm-cubical-app, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
cubical_type_at_pair_lemma, 
discrete-fun-app-invariant, 
fset_wf, 
cubical-term-equal, 
cubical-snd_wf, 
csm-cubical-pi, 
csm_id_adjoin_fst_type_lemma, 
csm-adjoin_wf, 
csm-comp_wf, 
csm-id_wf, 
cubical_set_cumulativity-i-j, 
cubical_set_wf, 
csm-ap-id-type, 
subtype_rel-equal, 
equal_functionality_wrt_subtype_rel2, 
cubical-app_wf, 
cubical-sigma_wf, 
csm-ap-id-term, 
sigma-path-fst, 
cubical-fst-pair, 
discrete-path-endpoints
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
independent_pairEquality, 
lambdaEquality_alt, 
universeIsType, 
inhabitedIsType, 
instantiate, 
universeEquality, 
axiomEquality, 
equalityIstype, 
applyEquality, 
functionEquality, 
sqequalRule, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
cumulativity, 
dependent_functionElimination, 
independent_isectElimination, 
hyp_replacement, 
independent_functionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
functionExtensionality, 
rename, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_pairEquality_alt
Latex:
\mforall{}[A,B:Type].  \mforall{}[e:\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}].
    (equiv-bijection-is(e)  \mmember{}  Bij(A;B;equiv-bijection(e)))
Date html generated:
2020_05_20-PM-03_43_39
Last ObjectModification:
2020_04_21-AM-01_00_10
Theory : cubical!type!theory
Home
Index