Nuprl Lemma : equiv-bijection-is_wf

[A,B:Type]. ∀[e:{() ⊢ _:Equiv(discr(A);discr(B))}].  (equiv-bijection-is(e) ∈ Bij(A;B;equiv-bijection(e)))


Proof




Definitions occuring in Statement :  equiv-bijection-is: equiv-bijection-is(e) equiv-bijection: equiv-bijection(e) cubical-equiv: Equiv(T;A) discrete-cubical-type: discr(T) cubical-term: {X ⊢ _:A} trivial-cube-set: () biject: Bij(A;B;f) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equiv-bijection: equiv-bijection(e) member: t ∈ T equiv-bijection-is: equiv-bijection-is(e) biject: Bij(A;B;f) surject: Surj(A;B;f) inject: Inj(A;B;f) and: P ∧ Q all: x:A. B[x] implies:  Q subtype_rel: A ⊆B unit: Unit I_cube: A(I) functor-ob: ob(F) pi1: fst(t) trivial-cube-set: () cubical-type-at: A(a) discrete-cubical-type: discr(T) uimplies: supposing a contractible-type: Contractible(A) cubical-fiber: Fiber(w;a) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q discrete-cubical-term: discr(t) equiv-fun: equiv-fun(f) cubical-fst: p.1 csm-id: 1(X) csm-ap-term: (t)s csm-ap: (s)x cubical-term-at: u(a) cc-snd: q cc-fst: p csm-ap-type: (AF)s csm-id-adjoin: [u] csm-comp: F cubical-sigma: Σ B cc-adjoin-cube: (v;u) csm-adjoin: (s;u) compose: g pi2: snd(t) exists: x:A. B[x] cubical-app: app(w; u)
Lemmas referenced :  equiv-contr_wf discrete-cubical-type_wf trivial-cube-set_wf istype-cubical-term cubical-equiv_wf istype-universe cubical-term-at_wf discrete-fun_wf equiv-fun_wf empty-fset_wf nat_wf it_wf subtype_rel_self I_cube_wf cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf path-type_wf cc-fst_wf csm-ap-term_wf discrete-cubical-term_wf cubical-app_wf_fun cubical-fun_wf csm-cubical-fun cubical-term-eqcd cc-snd_wf csm-id-adjoin_wf discrete-fun-at-app cubical-fst_wf cubical-fiber_wf cubical-pi_wf cubical-type-cumulativity2 cubical-pair_wf cubical-refl_wf csm-path-type equal_wf squash_wf true_wf cubical-type_wf iff_weakening_equal csm-discrete-cubical-type csm-discrete-cubical-term csm-cubical-app csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma cubical_type_at_pair_lemma discrete-fun-app-invariant fset_wf cubical-term-equal cubical-snd_wf csm-cubical-pi csm_id_adjoin_fst_type_lemma csm-adjoin_wf csm-comp_wf csm-id_wf cubical_set_cumulativity-i-j cubical_set_wf csm-ap-id-type subtype_rel-equal equal_functionality_wrt_subtype_rel2 cubical-app_wf cubical-sigma_wf csm-ap-id-term sigma-path-fst cubical-fst-pair discrete-path-endpoints
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis independent_pairEquality lambdaEquality_alt universeIsType inhabitedIsType instantiate universeEquality axiomEquality equalityIstype applyEquality functionEquality sqequalRule Error :memTop,  equalityTransitivity equalitySymmetry lambdaFormation_alt cumulativity dependent_functionElimination independent_isectElimination hyp_replacement independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination functionExtensionality rename independent_pairFormation applyLambdaEquality dependent_pairEquality_alt

Latex:
\mforall{}[A,B:Type].  \mforall{}[e:\{()  \mvdash{}  \_:Equiv(discr(A);discr(B))\}].
    (equiv-bijection-is(e)  \mmember{}  Bij(A;B;equiv-bijection(e)))



Date html generated: 2020_05_20-PM-03_43_39
Last ObjectModification: 2020_04_21-AM-01_00_10

Theory : cubical!type!theory


Home Index