Nuprl Lemma : equiv-contr_wf

[G:j⊢]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[a:{G ⊢ _:A}].
  (equiv-contr(f;a) ∈ {G ⊢ _:Contractible(Fiber(equiv-fun(f);a))})


Proof




Definitions occuring in Statement :  equiv-contr: equiv-contr(f;a) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-fiber: Fiber(w;a) contractible-type: Contractible(A) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-equiv: Equiv(T;A) subtype_rel: A ⊆B squash: T all: x:A. B[x] true: True equiv-fun: equiv-fun(f) is-cubical-equiv: IsEquiv(T;A;w) prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q implies:  Q cubical-type: {X ⊢ _} csm-id: 1(X) csm-ap-type: (AF)s cc-fst: p csm-id-adjoin: [u] csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) equiv-contr: equiv-contr(f;a) cc-snd: q csm-comp: F compose: g pi2: snd(t) rev_implies:  Q
Lemmas referenced :  cubical-snd_wf cubical_set_cumulativity-i-j cubical-fun_wf is-cubical-equiv_wf cube-context-adjoin_wf cubical-type-cumulativity2 csm-ap-type_wf cc-fst_wf cc-snd_wf cubical-term_wf csm-cubical-fun cubical-equiv_wf cubical-type_wf cubical_set_wf csm-ap-term_wf contractible-type_wf cubical-fiber_wf csm-id-adjoin_wf equiv-fun_wf member_wf squash_wf true_wf istype-universe csm-cubical-pi iff_weakening_equal csm-contractible-type csm-adjoin_wf equal_wf csm-ap-type-fst-id-adjoin subtype_rel_self csm-cubical-fiber csm_ap_term_fst_adjoin_lemma cc_snd_csm_id_adjoin_lemma cc-snd-csm-adjoin-sq csm-id_wf subset-cubical-term2 sub_cubical_set_self cubical-sigma_wf csm-ap-id-type csm-ap-id-term equal_functionality_wrt_subtype_rel2 cubical-app_wf csm-comp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution thin instantiate extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache lambdaEquality_alt imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry hyp_replacement universeIsType axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType universeEquality independent_isectElimination productElimination independent_functionElimination setElimination rename lambdaFormation_alt equalityIstype Error :memTop,  cumulativity

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].
    (equiv-contr(f;a)  \mmember{}  \{G  \mvdash{}  \_:Contractible(Fiber(equiv-fun(f);a))\})



Date html generated: 2020_05_20-PM-03_27_10
Last ObjectModification: 2020_04_08-PM-04_45_44

Theory : cubical!type!theory


Home Index