Nuprl Lemma : glue-comp-agrees2

The type (not displayed) of the equality in this lemma 
is composition-structure{i:l}(G, psi; T)
This means that in "extent" psi, when ⌜G ⊢ Glue [psi ⊢→ (T;f)] T ∈ {G, psi ⊢ _}⌝the
composition for ⌜Glue [psi ⊢→ (T;f)] A⌝ is the same as the composition for T.

This property of the compostion for Glue is used in construction of the 
composition for c𝕌  (the cubiucal universe type).⋅

[G:j⊢]. ∀[A:{G ⊢ _}]. ∀[cA:G +⊢ Compositon(A)]. ∀[psi:{G ⊢ _:𝔽}]. ∀[T:{G, psi ⊢ _}]. ∀[cT:G, psi +⊢ Compositon(T)].
[f:{G, psi ⊢ _:Equiv(T;A)}].
  comp(Glue [psi ⊢→ (T, f)] A)  cT ∈ G ⊢ Compositon(T) supposing G ⊢ (1(𝔽 psi)


Proof




Definitions occuring in Statement :  glue-comp: comp(Glue [phi ⊢→ (T, f)] A)  composition-structure: Gamma ⊢ Compositon(A) cubical-equiv: Equiv(T;A) face-term-implies: Gamma ⊢ (phi  psi) context-subset: Gamma, phi face-1: 1(𝔽) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop:
Lemmas referenced :  glue-comp-agrees composition-structure-subset context-subset_wf face-1-implies-subset face-term-implies_wf face-1_wf istype-cubical-term cubical-equiv_wf thin-context-subset composition-structure_wf cubical-type_wf face-type_wf cubical_set_cumulativity-i-j cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality independent_isectElimination because_Cache sqequalRule universeIsType instantiate

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{G,  psi  \mvdash{}  \_\}].
\mforall{}[cT:G,  psi  +\mvdash{}  Compositon(T)].  \mforall{}[f:\{G,  psi  \mvdash{}  \_:Equiv(T;A)\}].
    comp(Glue  [psi  \mvdash{}\mrightarrow{}  (T,  f)]  A)    =  cT  supposing  G  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  psi)



Date html generated: 2020_05_20-PM-07_04_00
Last ObjectModification: 2020_04_21-PM-11_52_26

Theory : cubical!type!theory


Home Index