Nuprl Lemma : glue-term-1
∀[Gamma:j⊢]. ∀[T:{Gamma ⊢ _}]. ∀[t:{Gamma ⊢ _:T}]. ∀[A,a:Top].  (Gamma ⊢ glue [1(𝔽) ⊢→ t] a = t ∈ {Gamma ⊢ _:T})
Proof
Definitions occuring in Statement : 
glue-term: glue [phi ⊢→ t] a
, 
face-1: 1(𝔽)
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
same-cubical-term: X ⊢ u=v:A
, 
uimplies: b supposing a
Lemmas referenced : 
glue-term-constraint, 
face-1_wf, 
thin-context-subset, 
context-subset-term-subtype, 
subset-cubical-term, 
context-subset_wf, 
context-1-subset, 
istype-top, 
istype-cubical-term, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
inhabitedIsType, 
universeIsType, 
instantiate
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[T:\{Gamma  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma  \mvdash{}  \_:T\}].  \mforall{}[A,a:Top].    (Gamma  \mvdash{}  glue  [1(\mBbbF{})  \mvdash{}\mrightarrow{}  t]  a  =  t)
Date html generated:
2020_05_20-PM-05_44_19
Last ObjectModification:
2020_04_21-PM-07_03_16
Theory : cubical!type!theory
Home
Index