Nuprl Lemma : glue-term-constraint

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[T:{Gamma, phi ⊢ _}]. ∀[t:{Gamma, phi ⊢ _:T}]. ∀[A,a:Top].
  Gamma, phi ⊢ glue [phi ⊢→ t] a=t:T


Proof




Definitions occuring in Statement :  glue-term: glue [phi ⊢→ t] a same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] top: Top
Definitions unfolded in proof :  uall: [x:A]. B[x] same-cubical-term: X ⊢ u=v:A member: t ∈ T uimplies: supposing a context-subset: Gamma, phi all: x:A. B[x] glue-term: glue [phi ⊢→ t] a subtype_rel: A ⊆B cubical-type-at: A(a) pi1: fst(t) face-type: 𝔽 constant-cubical-type: (X) I_cube: A(I) functor-ob: ob(F) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: and: P ∧ Q so_apply: x[s] implies:  Q assert: b guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True sq_type: SQType(T) cubical-term-at: u(a)
Lemmas referenced :  I_cube_wf context-subset_wf fset_wf nat_wf cubical-term-equal istype-top istype-cubical-term cubical-type_wf face-type_wf cubical_set_wf I_cube_pair_redex_lemma subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool fl-eq_wf cubical-term-at_wf subset-cubical-term context-subset-is-subset subtype_rel_self lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf btrue_wf iff_functionality_wrt_iff assert_wf true_wf iff_weakening_uiff assert-fl-eq iff_weakening_equal istype-true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt equalitySymmetry cut functionExtensionality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache equalityTransitivity independent_isectElimination universeIsType instantiate dependent_functionElimination Error :memTop,  sqequalRule cumulativity applyEquality lambdaEquality_alt productEquality isectEquality setElimination rename inhabitedIsType independent_functionElimination productElimination independent_pairFormation lambdaFormation_alt natural_numberEquality equalityIstype

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[T:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[t:\{Gamma,  phi  \mvdash{}  \_:T\}].  \mforall{}[A,a:Top].
    Gamma,  phi  \mvdash{}  glue  [phi  \mvdash{}\mrightarrow{}  t]  a=t:T



Date html generated: 2020_05_20-PM-05_43_51
Last ObjectModification: 2020_04_21-PM-07_02_13

Theory : cubical!type!theory


Home Index