Nuprl Lemma : term-to-pathtype-beta
∀[G:j⊢]. ∀[A:{G ⊢ _}].  ∀r:{G ⊢ _:𝕀}. ∀a:{G.𝕀 ⊢ _:(A)p}.  (<>a @ r = (a)[r] ∈ {G ⊢ _:A})
Proof
Definitions occuring in Statement : 
term-to-pathtype: <>a
, 
cubicalpath-app: pth @ r
, 
interval-type: 𝕀
, 
csm-id-adjoin: [u]
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
term-to-pathtype: <>a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
term-to-path-beta, 
cubical-term_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
interval-type_wf, 
csm-ap-type_wf, 
cc-fst_wf, 
cubical-type-cumulativity2, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
hypothesis, 
universeIsType, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].    \mforall{}r:\{G  \mvdash{}  \_:\mBbbI{}\}.  \mforall{}a:\{G.\mBbbI{}  \mvdash{}  \_:(A)p\}.    (<>a  @  r  =  (a)[r])
Date html generated:
2020_05_20-PM-03_20_35
Last ObjectModification:
2020_04_06-PM-06_37_30
Theory : cubical!type!theory
Home
Index