Nuprl Lemma : term-to-pathtype-beta

[G:j⊢]. ∀[A:{G ⊢ _}].  ∀r:{G ⊢ _:𝕀}. ∀a:{G.𝕀 ⊢ _:(A)p}.  (<>(a)[r] ∈ {G ⊢ _:A})


Proof




Definitions occuring in Statement :  term-to-pathtype: <>a cubicalpath-app: pth r interval-type: 𝕀 csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  term-to-pathtype: <>a uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  term-to-path-beta cubical-term_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j interval-type_wf csm-ap-type_wf cc-fst_wf cubical-type-cumulativity2 cubical-type_wf cubical_set_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt hypothesis universeIsType thin instantiate sqequalHypSubstitution isectElimination hypothesisEquality applyEquality because_Cache lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[A:\{G  \mvdash{}  \_\}].    \mforall{}r:\{G  \mvdash{}  \_:\mBbbI{}\}.  \mforall{}a:\{G.\mBbbI{}  \mvdash{}  \_:(A)p\}.    (<>a  @  r  =  (a)[r])



Date html generated: 2020_05_20-PM-03_20_35
Last ObjectModification: 2020_04_06-PM-06_37_30

Theory : cubical!type!theory


Home Index