Nuprl Lemma : uniform-comp-function-cumulativity
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:composition-function{[i | j]:l, i:l}(Gamma; A)].
  (uniform-comp-function{[i | j]:l, i:l}(Gamma; A; comp) 
⇒ uniform-comp-function{j:l, i:l}(Gamma; A; comp))
Proof
Definitions occuring in Statement : 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
cubical_set_cumulativity-i-j, 
cube_set_map_cumulativity-i-j, 
cube-context-adjoin_wf, 
interval-type_wf, 
cube_set_map_wf, 
uniform-comp-function_wf, 
composition-function_wf, 
cubical-type_wf, 
cubical_set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
hypothesis, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
extract_by_obid, 
sqequalRule, 
isectElimination, 
universeIsType, 
because_Cache, 
inhabitedIsType, 
lambdaEquality_alt, 
axiomEquality, 
functionIsTypeImplies, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:composition-function\{[i  |  j]:l,  i:l\}(Gamma;  A)].
    (uniform-comp-function\{[i  |  j]:l,  i:l\}(Gamma;  A;  comp)
    {}\mRightarrow{}  uniform-comp-function\{j:l,  i:l\}(Gamma;  A;  comp))
Date html generated:
2020_05_20-PM-04_21_50
Last ObjectModification:
2020_04_21-PM-08_42_08
Theory : cubical!type!theory
Home
Index