Nuprl Lemma : uniform-comp-function-cumulativity

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:composition-function{[i j]:l, i:l}(Gamma; A)].
  (uniform-comp-function{[i j]:l, i:l}(Gamma; A; comp)  uniform-comp-function{j:l, i:l}(Gamma; A; comp))


Proof




Definitions occuring in Statement :  uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) composition-function: composition-function{j:l,i:l}(Gamma;A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] subtype_rel: A ⊆B prop:
Lemmas referenced :  cubical_set_cumulativity-i-j cube_set_map_cumulativity-i-j cube-context-adjoin_wf interval-type_wf cube_set_map_wf uniform-comp-function_wf composition-function_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution hypothesis dependent_functionElimination thin hypothesisEquality applyEquality instantiate extract_by_obid sqequalRule isectElimination universeIsType because_Cache inhabitedIsType lambdaEquality_alt axiomEquality functionIsTypeImplies isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:composition-function\{[i  |  j]:l,  i:l\}(Gamma;  A)].
    (uniform-comp-function\{[i  |  j]:l,  i:l\}(Gamma;  A;  comp)
    {}\mRightarrow{}  uniform-comp-function\{j:l,  i:l\}(Gamma;  A;  comp))



Date html generated: 2020_05_20-PM-04_21_50
Last ObjectModification: 2020_04_21-PM-08_42_08

Theory : cubical!type!theory


Home Index