Nuprl Lemma : univalence_wf
∀[G:j⊢]. G ⊢' Univalence
Proof
Definitions occuring in Statement : 
univalence: Univalence
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
univalence: Univalence
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cubical_set_wf, 
cubical-pi_wf, 
cubical-universe_wf, 
contractible-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cubical-sigma_wf, 
cc-snd_wf, 
csm-cubical-universe, 
csm-ap-term_wf, 
cc-fst_wf, 
cubical-equiv_wf, 
universe-decode_wf, 
cubical-type-cumulativity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
because_Cache, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[G:j\mvdash{}].  G  \mvdash{}'  Univalence
Date html generated:
2020_05_20-PM-07_42_01
Last ObjectModification:
2020_04_28-PM-11_20_03
Theory : cubical!type!theory
Home
Index