Nuprl Lemma : univalence_wf

[G:j⊢]. G ⊢Univalence


Proof




Definitions occuring in Statement :  univalence: Univalence cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] univalence: Univalence member: t ∈ T subtype_rel: A ⊆B
Lemmas referenced :  cubical_set_wf cubical-pi_wf cubical-universe_wf contractible-type_wf cube-context-adjoin_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 cubical-sigma_wf cc-snd_wf csm-cubical-universe csm-ap-term_wf cc-fst_wf cubical-equiv_wf universe-decode_wf cubical-type-cumulativity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut instantiate introduction extract_by_obid hypothesis thin sqequalHypSubstitution isectElimination hypothesisEquality applyEquality sqequalRule because_Cache Error :memTop,  equalityTransitivity equalitySymmetry

Latex:
\mforall{}[G:j\mvdash{}].  G  \mvdash{}'  Univalence



Date html generated: 2020_05_20-PM-07_42_01
Last ObjectModification: 2020_04_28-PM-11_20_03

Theory : cubical!type!theory


Home Index