Nuprl Lemma : eu-be-compress
∀e:EuclideanPlane. ∀a,b,c:Point.  (a_b_c ⇒ a_c_b ⇒ (b = c ∈ Point))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
eu-between-eq: a_b_c, 
eu-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
euclidean-plane: EuclideanPlane, 
uimplies: b supposing a
Lemmas referenced : 
eu-between-eq_wf, 
eu-point_wf, 
euclidean-plane_wf, 
eu-between-eq-exchange3, 
eu-between-eq-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a\_b\_c  {}\mRightarrow{}  a\_c\_b  {}\mRightarrow{}  (b  =  c))
Date html generated:
2016_05_18-AM-06_45_25
Last ObjectModification:
2015_12_28-AM-09_21_49
Theory : euclidean!geometry
Home
Index