Nuprl Lemma : eu-be-compress

e:EuclideanPlane. ∀a,b,c:Point.  (a_b_c  a_c_b  (b c ∈ Point))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-point: Point all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane uimplies: supposing a
Lemmas referenced :  eu-between-eq_wf eu-point_wf euclidean-plane_wf eu-between-eq-exchange3 eu-between-eq-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality dependent_functionElimination because_Cache independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a\_b\_c  {}\mRightarrow{}  a\_c\_b  {}\mRightarrow{}  (b  =  c))



Date html generated: 2016_05_18-AM-06_45_25
Last ObjectModification: 2015_12_28-AM-09_21_49

Theory : euclidean!geometry


Home Index