Nuprl Lemma : eu-midpoint-trivial

e:EuclideanPlane. ∀a,b:Point.  (a=b=a  (a b ∈ Point))


Proof




Definitions occuring in Statement :  eu-midpoint: a=m=b euclidean-plane: EuclideanPlane eu-point: Point all: x:A. B[x] implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane eu-midpoint: a=m=b uimplies: supposing a and: P ∧ Q
Lemmas referenced :  eu-midpoint_wf eu-point_wf euclidean-plane_wf eu-between-eq-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality setElimination rename independent_isectElimination productElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (a=b=a  {}\mRightarrow{}  (a  =  b))



Date html generated: 2016_05_18-AM-06_42_24
Last ObjectModification: 2015_12_28-AM-09_22_28

Theory : euclidean!geometry


Home Index