Nuprl Lemma : eu-seg-congruent_symmetry
∀e:EuclideanPlane. ∀[s1,s2:Segment].  s2 ≡ s1 supposing s1 ≡ s2
Proof
Definitions occuring in Statement : 
eu-seg-congruent: s1 ≡ s2
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
eu-seg-congruent: s1 ≡ s2
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
Lemmas referenced : 
eu-congruent-symmetry, 
eu-seg1_wf, 
eu-seg2_wf, 
eu-seg-congruent_wf, 
eu-segment_wf, 
euclidean-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
hypothesis, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s1,s2:Segment].    s2  \mequiv{}  s1  supposing  s1  \mequiv{}  s2
Date html generated:
2016_05_18-AM-06_36_48
Last ObjectModification:
2015_12_28-AM-09_25_31
Theory : euclidean!geometry
Home
Index