Nuprl Lemma : eu-seg-congruent_symmetry

e:EuclideanPlane. ∀[s1,s2:Segment].  s2 ≡ s1 supposing s1 ≡ s2


Proof




Definitions occuring in Statement :  eu-seg-congruent: s1 ≡ s2 eu-segment: Segment euclidean-plane: EuclideanPlane uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a eu-seg-congruent: s1 ≡ s2 member: t ∈ T euclidean-plane: EuclideanPlane prop:
Lemmas referenced :  eu-congruent-symmetry eu-seg1_wf eu-seg2_wf eu-seg-congruent_wf eu-segment_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation sqequalHypSubstitution cut lemma_by_obid dependent_functionElimination thin hypothesisEquality isectElimination setElimination rename hypothesis independent_isectElimination

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s1,s2:Segment].    s2  \mequiv{}  s1  supposing  s1  \mequiv{}  s2



Date html generated: 2016_05_18-AM-06_36_48
Last ObjectModification: 2015_12_28-AM-09_25_31

Theory : euclidean!geometry


Home Index