Nuprl Lemma : eu-seg-congruent_transitivity
∀e:EuclideanPlane. ∀[s1,s2,s3:Segment].  (s1 ≡ s3) supposing (s1 ≡ s2 and s2 ≡ s3)
Proof
Definitions occuring in Statement : 
eu-seg-congruent: s1 ≡ s2
, 
eu-segment: Segment
, 
euclidean-plane: EuclideanPlane
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
eu-seg-congruent: s1 ≡ s2
, 
member: t ∈ T
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
euclidean-plane_wf, 
eu-segment_wf, 
eu-seg-congruent_wf, 
eu-congruent-transitivity, 
eu-seg2_wf, 
eu-seg1_wf, 
sq_stable__eu-congruent
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
introduction, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[s1,s2,s3:Segment].    (s1  \mequiv{}  s3)  supposing  (s1  \mequiv{}  s2  and  s2  \mequiv{}  s3)
Date html generated:
2016_05_18-AM-06_36_46
Last ObjectModification:
2016_01_16-PM-10_30_43
Theory : euclidean!geometry
Home
Index