Nuprl Lemma : eu-seg-length-test-ext

e:EuclideanPlane. ∀[a,b,c,d,x,y:Point].  (ba=xy) supposing (dc=yx and ab=cd)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-congruent: ab=cd eu-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  record-select: r.x stable__eu-congruent sq_stable__from_stable sq_stable__eu-congruent eu-seg-congruent-iff-length eu-congruent-iff-length eu-seg-length-test member: t ∈ T
Lemmas referenced :  stable__eu-congruent sq_stable__from_stable sq_stable__eu-congruent eu-seg-congruent-iff-length eu-congruent-iff-length eu-seg-length-test
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d,x,y:Point].    (ba=xy)  supposing  (dc=yx  and  ab=cd)



Date html generated: 2016_07_08-PM-05_54_25
Last ObjectModification: 2016_07_05-PM-03_04_14

Theory : euclidean!geometry


Home Index