Nuprl Lemma : eu-seg-length-test-ext
∀e:EuclideanPlane. ∀[a,b,c,d,x,y:Point].  (ba=xy) supposing (dc=yx and ab=cd)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
record-select: r.x
, 
stable__eu-congruent, 
sq_stable__from_stable, 
sq_stable__eu-congruent, 
eu-seg-congruent-iff-length, 
eu-congruent-iff-length, 
eu-seg-length-test, 
member: t ∈ T
Lemmas referenced : 
stable__eu-congruent, 
sq_stable__from_stable, 
sq_stable__eu-congruent, 
eu-seg-congruent-iff-length, 
eu-congruent-iff-length, 
eu-seg-length-test
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d,x,y:Point].    (ba=xy)  supposing  (dc=yx  and  ab=cd)
Date html generated:
2016_07_08-PM-05_54_25
Last ObjectModification:
2016_07_05-PM-03_04_14
Theory : euclidean!geometry
Home
Index