Nuprl Lemma : Dtri-cycle
∀e:EuclideanPlane. ∀a,b,c:Point.
  (Dtri(e;a;b;c) 
⇒ {(Dtri(e;a;c;b) ∧ Dtri(e;c;a;b)) ∧ (Dtri(e;c;b;a) ∧ Dtri(e;b;a;c)) ∧ Dtri(e;b;c;a)})
Proof
Definitions occuring in Statement : 
dist-tri: Dtri(g;a;b;c)
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
Dtri-iff-lsep, 
lsep-all-sym, 
dist-tri_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
independent_pairFormation, 
universeIsType, 
isectElimination, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (Dtri(e;a;b;c)
    {}\mRightarrow{}  \{(Dtri(e;a;c;b)  \mwedge{}  Dtri(e;c;a;b))  \mwedge{}  (Dtri(e;c;b;a)  \mwedge{}  Dtri(e;b;a;c))  \mwedge{}  Dtri(e;b;c;a)\})
Date html generated:
2019_10_16-PM-02_55_19
Last ObjectModification:
2019_02_27-AM-11_26_57
Theory : euclidean!plane!geometry
Home
Index