Nuprl Lemma : Dtri-cycle

e:EuclideanPlane. ∀a,b,c:Point.
  (Dtri(e;a;b;c)  {(Dtri(e;a;c;b) ∧ Dtri(e;c;a;b)) ∧ (Dtri(e;c;b;a) ∧ Dtri(e;b;a;c)) ∧ Dtri(e;b;c;a)})


Proof




Definitions occuring in Statement :  dist-tri: Dtri(g;a;b;c) euclidean-plane: EuclideanPlane geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q guard: {T} uall: [x:A]. B[x] prop: subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q
Lemmas referenced :  Dtri-iff-lsep lsep-all-sym dist-tri_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis because_Cache independent_pairFormation universeIsType isectElimination inhabitedIsType applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (Dtri(e;a;b;c)
    {}\mRightarrow{}  \{(Dtri(e;a;c;b)  \mwedge{}  Dtri(e;c;a;b))  \mwedge{}  (Dtri(e;c;b;a)  \mwedge{}  Dtri(e;b;a;c))  \mwedge{}  Dtri(e;b;c;a)\})



Date html generated: 2019_10_16-PM-02_55_19
Last ObjectModification: 2019_02_27-AM-11_26_57

Theory : euclidean!plane!geometry


Home Index