Nuprl Lemma : Dtri-iff-lsep

e:EuclideanPlane. ∀a,b,c:Point.  (Dtri(e;a;b;c) ⇐⇒ bc)


Proof




Definitions occuring in Statement :  dist-tri: Dtri(g;a;b;c) euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a dist-tri: Dtri(g;a;b;c) cand: c∧ B squash: T basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane true: True
Lemmas referenced :  dist-tri_wf geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf Prop22-inequality-implies-triangle dist-iff-lt Euclid-Prop20_cycle geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-length_wf geo-mk-seg_wf geo-add-length_wf geo-length-flip subtype_rel_self iff_weakening_equal geo-add-length-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType because_Cache productElimination dependent_functionElimination independent_functionElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry setElimination rename natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (Dtri(e;a;b;c)  \mLeftarrow{}{}\mRightarrow{}  a  \#  bc)



Date html generated: 2019_10_16-PM-02_55_00
Last ObjectModification: 2019_02_27-AM-10_47_32

Theory : euclidean!plane!geometry


Home Index