Nuprl Lemma : dist-iff-lt

g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (|ef| < |ab| |cd| ⇐⇒ D(a;b;c;d;e;f))


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  dist-lemma-lt2 geo-lt_wf geo-length_wf geo-mk-seg_wf geo-add-length_wf dist-lemma-lt dist_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis universeIsType isectElimination sqequalRule setElimination rename because_Cache inhabitedIsType applyEquality instantiate independent_isectElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (|ef|  <  |ab|  +  |cd|  \mLeftarrow{}{}\mRightarrow{}  D(a;b;c;d;e;f))



Date html generated: 2019_10_16-PM-02_51_02
Last ObjectModification: 2018_10_03-AM-11_24_39

Theory : euclidean!plane!geometry


Home Index