Nuprl Lemma : Euclid-Prop20_cycle

e:EuclideanPlane. ∀a,b,c:Point.  (a bc  (|bc| < |ba| |ac| ∧ |ac| < |ba| |bc| ∧ |ba| < |ac| |bc|))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: squash: T basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  Euclid-Prop20 geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf lsep-all-sym geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-length_wf geo-mk-seg_wf geo-add-length_wf geo-length-flip subtype_rel_self iff_weakening_equal geo-add-length-comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis independent_pairFormation universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType because_Cache productElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry setElimination rename natural_numberEquality imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (a  \#  bc  {}\mRightarrow{}  (|bc|  <  |ba|  +  |ac|  \mwedge{}  |ac|  <  |ba|  +  |bc|  \mwedge{}  |ba|  <  |ac|  +  |bc|))



Date html generated: 2019_10_16-PM-02_19_46
Last ObjectModification: 2019_02_17-PM-00_35_09

Theory : euclidean!plane!geometry


Home Index