Nuprl Lemma : Euclid-Prop20

e:EuclideanPlane. ∀a,b,c:Point.  (a bc  |bc| < |ba| |ac|)


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry cand: c∧ B geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m geo-tri: Triangle(a;b;c) basic-geometry-: BasicGeometry- geo-cong-angle: abc ≅a xyz geo-strict-between: a-b-c uiff: uiff(P;Q) euclidean-plane: EuclideanPlane squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-sep-sym lsep-implies-sep colinear-lsep lsep-all-sym geo-strict-between-sep3 geo-colinear-is-colinear-set geo-strict-between-implies-colinear length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than Euclid-Prop5_1 geo-strict-between_wf geo-cong-angle_wf geo-congruent_wf geo-proper-extend-exists Euclid-Prop18-lemma colinear-lsep-cycle geo-strict-between-sym geo-strict-between-sep1 geo-cong-angle-symm2 geo-lt-angle-symm2 geo-cong-angle-preserves-lt-angle geo-lt-angle-symm Euclid-Prop19 lsep-symmetry geo-out_weakening geo-eq_weakening geo-between-out geo-strict-between-implies-between geo-between-symmetry geo-out-preserves-lt-angle geo-add-length-between geo-congruent-iff-length geo-add-length_wf geo-length_wf geo-mk-seg_wf geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut sqequalHypSubstitution productElimination thin universeIsType introduction extract_by_obid isectElimination hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule inhabitedIsType because_Cache dependent_functionElimination independent_functionElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType rename equalitySymmetry equalityTransitivity equalityIstype applyLambdaEquality setElimination imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  |bc|  <  |ba|  +  |ac|)



Date html generated: 2019_10_16-PM-02_19_28
Last ObjectModification: 2019_09_12-AM-11_42_48

Theory : euclidean!plane!geometry


Home Index