Nuprl Lemma : Euclid-Prop19
∀e:EuclideanPlane. ∀a,b,c:Point.  (a # bc ⇒ bca < abc ⇒ |ab| < |ac|)
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz, 
geo-lt: p < q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
guard: {T}, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
sq_exists: ∃x:A [B[x]], 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
squash: ↓T, 
exists: ∃x:A. B[x], 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
cand: A c∧ B, 
uimplies: b supposing a, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
basic-geometry-: BasicGeometry-, 
uiff: uiff(P;Q), 
geo-cong-angle: abc ≅a xyz, 
geo-lsep: a # bc, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
Euclid-midpoint, 
lsep-implies-sep, 
geo-sep_wf, 
sq_stable__midpoint, 
geo-midpoint_wf, 
midpoint-sep, 
colinear-lsep, 
lsep-all-sym, 
geo-sep-sym, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
istype-void, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-lt-angle_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
colinear-implies-midpoint, 
geo-strict-between-sep1, 
geo-strict-between-implies-colinear, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-midpoint-diagonals-congruent, 
geo-midpoint-symmetry, 
geo-congruent_wf, 
geo-proper-extend-exists, 
geo-between-sep, 
geo-between-trivial, 
geo-congruent-right-comm, 
geo-between_wf, 
geo-out_weakening, 
geo-congruent-sep, 
geo-eq_weakening, 
geo-between-out, 
geo-congruent-symmetry, 
geo-between-symmetry, 
euclidean-plane-axioms, 
geo-out_inversion, 
left-implies-sep, 
geo-cong-angle-symm2, 
lsep-symmetry, 
out-preserves-angle-cong_1, 
out-cong-angle, 
geo-cong-angle-preserves-lt-angle2, 
geo-cong-angle-preserves-lt-angle, 
Euclid-Prop9-with-between, 
colinear-lsep-cycle, 
Euclid-Prop19-lemma2, 
geo-lt-angle-symm2, 
geo-cong-angle_wf, 
geo-strict-between_wf, 
geo-lt_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
Euclid-Prop19-lemma1, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
productElimination, 
dependent_set_memberEquality_alt, 
universeIsType, 
isectElimination, 
applyEquality, 
sqequalRule, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation_alt, 
independent_isectElimination, 
isect_memberEquality_alt, 
voidElimination, 
natural_numberEquality, 
independent_pairFormation, 
unionElimination, 
approximateComputation, 
lambdaEquality_alt, 
productIsType, 
instantiate, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  bca  <  abc  {}\mRightarrow{}  |ab|  <  |ac|)
Date html generated:
2019_10_16-PM-02_19_09
Last ObjectModification:
2019_09_12-AM-11_43_02
Theory : euclidean!plane!geometry
Home
Index